Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 943–947 | Cite as

Relationship between the Macroscopic and Quantum Characteristics of Dynamic Viscosity for Hydrocarbons upon the Compensation Effect

  • M. Yu. Dolomatov
  • E. A. Kovaleva
  • D. A. Khamidullina
Structure of Matter and Quantum Chemistry


An approach that allows the calculation of dynamic viscosity for liquid hydrocarbons from quantum (ionization energies) and molecular (Wiener topological indices) parameters is proposed. A physical relationship is revealed between ionization and the energies of viscous flow activation. This relationship is due to the contribution from the dispersion component of Van der Waals forces to intermolecular interaction. A two-parameter dependence of the energy of viscous flow activation, energy of ionization, and Wiener topological indices is obtained. The dynamic viscosities of liquid hydrocarbons can be calculated from the kinetic compensation effect of dynamic viscosity, which indicates a relationship between the energy of activation and the Arrhenius pre-exponental factor of the Frenkel–Eyring hole model. Calculation results are confirmed through statistical processing of the experimental data.


dynamic viscosity coefficients energy of activation of viscous flow Van der Waals forces Arrhenius pre-exponental factor kinetic compensation effect Wiener topological index ionization energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Burdick and W. L. Leffler, Petrochemicals in Nontechnical Language (Penn Well Books, Tulsa, Oklahoma, 1990).Google Scholar
  2. 2.
    Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Moscow, 1975) [in Russian].Google Scholar
  3. 3.
    D. S. Viswanath, T. K. Ghosh, D. L. Prasadet, et al., Viscosity of Liquids. Theory, Estimation, Experiment, and Data (Springer, Netherlands, 2007), p.660.Google Scholar
  4. 4.
    G. I. Fuks, Viscosity and Plasticity of Petroleum Products (Inst. Komp’yut. Issled., Moscow, Izhevsk, 2003) [in Russian].Google Scholar
  5. 5.
    P. J. Fogel’son and E. R. Likhachev, Tech. Phys. 46, 1056 (2001).CrossRefGoogle Scholar
  6. 6.
    P. Bennema, Xiang Yang Liu, K. Lewtas, et al., J. Cryst. Growth 121, 679 (1992).CrossRefGoogle Scholar
  7. 7.
    J. E. Lennard-Jones, Proc. Phys. Soc. 43, 461 (1931).CrossRefGoogle Scholar
  8. 8.
    M. Yu. Dolomatov and A. A. Ishkinin, Inzh.-Fiz. Zh. 84, 1325 (2011).Google Scholar
  9. 9.
    M. Yu. Dolomatov and S. V. Dezortsev, J. Eng. Phys. Thermophys. 85, 1463 (2012).CrossRefGoogle Scholar
  10. 10.
    S. I. Rodchenko, Extended Abstract of Cand. Sci. (Tech. Sci.) Dissertation (Voronezh State Tech. Univ., Voronezh, 2002).Google Scholar
  11. 11.
    A. T. Balaban, D. Mills, O. Ivanciuc, and S. C. Basak, Croat. Chem. Acta 73, 923 (2000).Google Scholar
  12. 12.
    L. V. Gurvich, G. V. Karachentsev, and V. N. Kondrat’ev, Energy of Chemical Bond Cleavage; Ionization Potentials and Affinity to the Electron (Nauka, Moscow, 1974) [in Russian].Google Scholar
  13. 13.
    NIST Chemistry WebBook. http://webbook. Scholar
  14. 14.
    V. M. Tatevskii, O. E. Grinina, A. B. Abramenkov, and Z. A. Tkachik, Zh. Fiz. Khim. 59, 2748 (1985).Google Scholar
  15. 15.
    N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, 2nd ed. (Nauka, Moscow, 1963; Halsted Press, New York, 1975).Google Scholar
  16. 16.
    J. P. Perdew, K. Burke, and M. Emzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Yu. Dolomatov
    • 1
    • 2
  • E. A. Kovaleva
    • 1
  • D. A. Khamidullina
    • 1
  1. 1.Ufa State Petroleum Technological UniversityUfaRussia
  2. 2.Bashkir State UniversityUfaRussia

Personalised recommendations