Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 955–964 | Cite as

Limiting Size of Monolayer Graphene Flakes Grown on Silicon Carbide or via Chemical Vapor Deposition on Different Substrates

  • N. I. Alekseev
Physical Chemistry of Nanoclusters and Nanomaterials


The maximum size of homogeneous monolayer graphene flakes that form during the high-temperature evaporation of silicon from a surface of SiC or during graphene synthesis via chemical vapor deposition is estimated, based on the theoretical calculations developed in this work. Conditions conducive to the fragmentation of a monolayer graphene sheet to form discrete fragments or terrace-type structures in which excess energy due to dangling bonds at the edges is compensated for by the lack of internal stress are indentified and described. The results from calculations for the sizes of graphene structures are compared with experimental findings for the most successful graphene syntheses reported in the literature.


graphene epitaxial growth chemical vapor deposition (CVD) quantum chemistry graphene synthesis on silicon carbide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hara, Y. Sano, K. Arima, et al., Sci. Technol. Adv. Mater. 8, 162 (2007).CrossRefGoogle Scholar
  2. 2.
    P. Wintterlin and M.-L. Bocquet, Surf. Sci. 603, 1841 (2009).CrossRefGoogle Scholar
  3. 3.
    S. Nie, J. M. Wofford, N. C. Bartelt, et al., Phys. Rev. B 84, 155425 (2011).CrossRefGoogle Scholar
  4. 4.
    D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, et al., Proc. Natl. Acad. Sci. USA 109, 7992 (2012). Scholar
  5. 5.
    N. I. Alekseev, Russ. J. Phys. Chem. A 88, 1483 (2014).CrossRefGoogle Scholar
  6. 6.
    D. W. Brenner, Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
  7. 7. ru.html.Google Scholar
  8. 8.
    G. I. Kobzev, Application of Non-Empirical and Semi-Empirical Methods in Quantum Chemical Calculations (Orenb. Gos. Univ., Orenburg, 2004) [in Russian].Google Scholar
  9. 9.
    C. Gong, G. Lee, B. Shan, E. M. Vogel, and R. M. Wallace, J. Appl. Phys. 108, 123711 (2010).CrossRefGoogle Scholar
  10. 10.
    M. F. Cabrera, M. I. Baskes, A. V. Melechko, and M. L. Simpson, Phys. Rev. B 77, 035405 (2008).CrossRefGoogle Scholar
  11. 11.
    N. I. Alekseev, Russ. J. Phys. Chem. A (2018, in press).Google Scholar
  12. 12.
    Y. Li, M. Li, T. Wang, F. Bai, and Y.-Xin Yu, Phys. Chem. Chem. Phys. 16, 5213 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Das, D. Lahiri, D. Y. Lee, A. Agarwal, and W. Choi, Carbon 59, 121 (2013).CrossRefGoogle Scholar
  14. 14.
    I. Vlassiouk, M. Regmi, P. Fulvio, et al., ACS Nano 5, 6069 (2011).CrossRefGoogle Scholar
  15. 15.
    J. Zhao, K. T. Rim, H. Zhou, R. He, et al., Solid State Commun. 151, 509 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg Electrotechnical University (LETI)St. PetersburgRussia

Personalised recommendations