Skip to main content
Log in

Structure of LiBF4 Solvate Complexes in Ethylene Carbonate, Based on High-Resolution NMR and Quantum-Chemical Data

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The ion solvation of LiBF4 in ethylene carbonate is studied via high resolution NMR, conductometry, and quantum-chemical simulation. 7Li, 11B, 19F, 13C, and 17O NMR spectra are acquired for LiBF4 solutions in ethylene carbonate, and their conductivity is measured in the concentration range of 0.07–1.77 mol kg–1 at 40°C. Molecular models of solvate complexes of a Li+BF 4 ion pair containing n ethylene carbonate molecules are constructed. The calculated 11B chemical shifts are virtually independent of n, which can provide a relationship between 11B experimental shifts and degree of dissociation (α). The α value is estimated from a theoretical change in chemical shift of −0.414 ppm when a BF 4 ion transitions from a free state to an associated one of the contact ion pair. The α values are in reasonable agreement with the degree of dissociation for LiBF4 in propylene carbonate, found from the Walden product of the equivalent electrical conductivity of a solution by its viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Richardson, A. M. Voice, and I. M. Ward, Electrochim. Acta 130, 606 (2014).

    Article  CAS  Google Scholar 

  2. P. M. Richardson, A. M. Voice, and I. M. Ward, J. Chem. Phys. 139, 214501 (2013).

    Article  CAS  Google Scholar 

  3. L. Garrido, A. Mejía, N. García, et al., J. Phys. Chem. B 119, 3097 (2015).

    Article  CAS  Google Scholar 

  4. M. Holz and Ch. Müller, Ber. Bunsen-Ges. Phys. Chem. 86, 141 (1982).

    Article  CAS  Google Scholar 

  5. M. Holz, Prog. NMR Spectrosc. 18, 327 (1986).

    Article  CAS  Google Scholar 

  6. S. R. Heil and M. Holz, J. Magn. Reson. 135, 17 (1988).

    Article  Google Scholar 

  7. P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  8. W. S. Price, Concepts Magn. Reson. 9, 299 (1997).

    Article  CAS  Google Scholar 

  9. S. Matsukawa, H. Yasunaga, C. Zhao, et al., Prog. Polym. Sci. 24, 995 (1999).

    Article  CAS  Google Scholar 

  10. P. N. Sen, Concepts Magn. Reson. A 23, 1 (2004).

    Article  Google Scholar 

  11. N. Chapman, O. Borodin, T. Yoon, et al., J. Phys. Chem. C 121, 2135 (2017).

    Article  CAS  Google Scholar 

  12. M. Shakourian-Fard, G. Kamath, and S. K. R. S. Sankaranarayanan, ChemPhysChem. 17, 2916 (2016).

    Article  CAS  Google Scholar 

  13. B. Jiang, V. Ponnuchamy, Y. N. Shen, et al., J Phys. Chem. Lett. 7, 3554 (2016).

    Article  CAS  Google Scholar 

  14. W. Cui, Y. Lansac, H. Lee, et al., Phys. Chem. Chem. Phys. 18, 23607 (2016).

    Article  CAS  Google Scholar 

  15. M. El Kazzi, I. Czekaj, E. J. Berg, et al., Top. Catal. 59, 628 (2016).

    Article  CAS  Google Scholar 

  16. M. G. Giorgini, K. Futamatagawa, H. Torii, et al., J. Phys. Chem. Lett. 6, 3296 (2015).

    Article  CAS  Google Scholar 

  17. K. D. Fulfer and D. G. Kuroda, J. Phys. Chem. C 120, 24011 (2016).

    Article  CAS  Google Scholar 

  18. L. M. Suo, Z. Fang, Y. S. Hu, et al., Chin. Phys. B 25, 016101 (2016).

    Article  Google Scholar 

  19. B. B. Zhang, Y. Zhou, X. Li, et al., Spectrochim. Acta, Part A 124, 40 (2014).

    Article  CAS  Google Scholar 

  20. X. Bogle, R. Vazquez, S. Greenbaum, et al., J. Phys. Chem. Lett. 4, 1664 (2013).

    Article  CAS  Google Scholar 

  21. J. Thielen, C. F. Kins, M. Schonhoff, et al., Appl. Magn. Reson. 45, 1063 (2014).

    Article  CAS  Google Scholar 

  22. K. Hayamizu, J. Chem. Eng. Data 57, 2012 (2012).

    Article  CAS  Google Scholar 

  23. V. I. Volkov and A. A. Marinin, Russ. Chem. Rev. 83, 248 (2013).

    Article  Google Scholar 

  24. D. M. Seo, P. D. Boyle, J. L. Allen, et al., J. Phys. Chem. C 118, 18377 (2014).

    Article  CAS  Google Scholar 

  25. O. Borodin, M. Olguin, P. Ganesh, et al., Phys. Chem. Chem. Phys. 18, 164 (2016).

    Article  CAS  Google Scholar 

  26. M. Takeuchi, Y. Kameda, Y. Umebayashi, et al., J. Mol. Liq. 148, 99 (2009).

    Article  CAS  Google Scholar 

  27. I. Skarmoutsos, V. Ponnuchamy, V. Vetere, et al., J. Phys. Chem. C 119, 4502 (2015).

    Article  CAS  Google Scholar 

  28. M. D. Bhatt, M. Cho, and K. Cho, Model. Simul. Mater. Sci. Eng. 20, 065004 (2012).

    Article  Google Scholar 

  29. W. H. Ding, X. L. Lei, and C. Y. Ouyang, Int. J. Quantum Chem. 116, 97 (2016).

    Article  CAS  Google Scholar 

  30. M. D. Bhatt and C. O’Dwyer, Phys. Chem. Chem. Phys. 17, 4799 (2015).

    Article  CAS  Google Scholar 

  31. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  32. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).

    Article  CAS  Google Scholar 

  33. S. S. Zhang, K. Xu, and T. R. Jow, J. Electrochem. Soc. 149, A586 (2002).

    Article  CAS  Google Scholar 

  34. X. C. Deng, M. Hu, X. L. Wei, et al., J. Power Sources 308, 172 (2016).

    Article  CAS  Google Scholar 

  35. K. Matsubara, R. Kaneuchi, and N. Maekita, J. Chem. Soc. 94, 3601 (1998).

    CAS  Google Scholar 

  36. X. C. Deng, M. Y. Hu, X. L. Wei, et al., J. Power Sources. 285, 146 (2015).

    Article  CAS  Google Scholar 

  37. J. Peng, L. Carbone, M. Gobet, et al., Electrochim. Acta 213, 606 (2016).

    Article  CAS  Google Scholar 

  38. L. Yang, A. Xiao, and B. L. Lucht, J. Mol. Liq. 154, 131 (2010).

    Article  CAS  Google Scholar 

  39. K. K. Lee, K. Park, H. C. Lee, et al., Nat. Commun. 8, 14658 (2017).

    Article  Google Scholar 

  40. T. Afroz, D. M. Seo, S. D. Han, et al., J. Phys. Chem. C 119, 7022 (2015).

    Article  CAS  Google Scholar 

  41. S. D. Han, J. L. Allen, E. Jonsson, et al., J. Phys. Chem. C 117, 5521 (2013).

    Article  CAS  Google Scholar 

  42. H. Tsunekawa, A. Narumi, M. Sano, et al., J. Phys. Chem. B 107, 10962 (2003).

    Article  CAS  Google Scholar 

  43. Y. Marcus and G. Hefter, Chem. Rev. 104, 3405 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yarmolenko.

Additional information

Original Russian Text © G.Z. Tulibaeva, A.F. Shestakov, V.I. Volkov, O.V. Yarmolenko, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 4, pp. 625–632.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulibaeva, G.Z., Shestakov, A.F., Volkov, V.I. et al. Structure of LiBF4 Solvate Complexes in Ethylene Carbonate, Based on High-Resolution NMR and Quantum-Chemical Data. Russ. J. Phys. Chem. 92, 749–755 (2018). https://doi.org/10.1134/S0036024418040313

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418040313

Keywords

Navigation