Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 719–723 | Cite as

Density of N2O Solutions in Perfluorodecalin As a Function of Concentration

  • A. V. Moshnyaga
  • A. V. Khoroshilov
  • M. P. Semyashkin
  • V. V. Mel’nikov
Physical Chemistry of Solutions

Abstract

The dependence of density ρ of nitrogen oxide N2O solutions in perfluorodecalin on the N2O concentration is measured. At a constant temperature, this dependence has a linear character: ρ = аx + b. Coefficients a and b are tabulated for five temperatures: 293, 298, 303, 313, and 328 K. These data allow us to control the N2O concentration in perfluorodecalin.

Keywords

organofluorine liquids perfluorodecalin nitrogen oxide solubility of nitrogen oxide in perfluorodecalin molar concentration of nitrogen oxide solution density temperature effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Pilarek, Chem. Process Eng. 35, 463 (2014).CrossRefGoogle Scholar
  2. 2.
    V. P. Sukhorukov, A. A. Ragimov, S. Yu. Pushkin, et al., Perfluorocarbon Blood Substitute with Gas Transport Function, Manual for Physicians, 2nd ed. (Moscow, 2008) [in Russian].Google Scholar
  3. 3.
    J. Turlo and A. Turlo, Military Pharm. Med. 6 (2), 2 (2013).Google Scholar
  4. 4.
    J. L. H. Johnson, M. C. Dolezal, A. Kerschen, et al., Artif. Cells, Blood Substit, Biotechnol. 37, 156 (2009).CrossRefGoogle Scholar
  5. 5.
    Wen-Tien Tsai, Aerosol Air Quality Res. 11, 903 (2011).Google Scholar
  6. 6.
    A. M. A. Dias, A. I. Caço, J. A. P. Coutinhoa, et al., Fluid Phase Equilib. 225, 39 (2004).CrossRefGoogle Scholar
  7. 7.
    A. M. A. Dias, M. Freire, J. A. P. Coutinho, and I. M. Marrucho, Fluid Phase Equilib. 222–223, 325 (2004).CrossRefGoogle Scholar
  8. 8.
    A. M. A. Dias, C. M. V. Gonçalves, A. I. Caço, et al., J. Chem. Eng. Data 50, 1328 (2005).CrossRefGoogle Scholar
  9. 9.
    J. Deschamps, D.-H. Menz, A. A. H. Padua, and M. F. Costa Gomes, J. Chem. Thermodyn. 39, 847 (2007).CrossRefGoogle Scholar
  10. 10.
    M. F. Costa Gomes, J. Deschamps, and D.-H. Menz, J. Fluorine Chem. 125, 1325 (2004).CrossRefGoogle Scholar
  11. 11.
    M. M. Piñeiro, D. Bessières, J. M. Gacio, et al., Fluid Phase Equilib. 220, 127 (2004).CrossRefGoogle Scholar
  12. 12.
    Chemical Encyclopedy (Bol’sh. Ross. Entsikl., Moscow, 1992), Vol. 3 [in Russian].Google Scholar
  13. 13.
    E. P. Wesseler et al., J. Fluorine Chem. 9, 137 (1977).CrossRefGoogle Scholar
  14. 14.
    P. Sobieszuk and M. Pilarek, Chem. Process Eng. 33, 595 (2012).Google Scholar
  15. 15.
    A. M. Lovelace, D. A. Rausch, and W. Postelnek, Aliphatic Fluorine Compounds (Reinhold, New York, 1958).Google Scholar
  16. 16.
    A. V. Moshnyaga, A. V. Khoroshilov, and D. M. Gromova, Usp. Khim. Khim. Tekhnol., No. 9, 19 (2014).Google Scholar
  17. 17.
    A. V. Khoroshilov, S. A. Cherednichenko, and Zo Je Naing, Perspekt. Mater., No. 8, 310 (2010).Google Scholar
  18. 18.
    Zo Je Naing, Cand. Sci. (Tech. Sci.) Dissertation (Mendeleev Russ. Chem.-Technol. Univ., Moscow, 2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Moshnyaga
    • 1
  • A. V. Khoroshilov
    • 1
  • M. P. Semyashkin
    • 1
  • V. V. Mel’nikov
    • 1
  1. 1.Mendeleev Russian University of Chemical TechnologyMoscowRussia

Personalised recommendations