Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 772–777 | Cite as

Determining the Specific Surface Area of Carbon Electrode Materials for Electrodes of Supercapacitors via the Adsorption of Methylene Blue Dye

  • A. A. Maltsev
  • S. B. Bibikov
  • V. N. Kalinichenko
  • M. V. Gudkov
  • V. P. Melnikov
  • S. D. Varfolomeev
Physical Chemistry of Surface Phenomena
  • 4 Downloads

Abstract

An improved way of measuring the specific surface area of carbon materials that is based on the adsorption of methylene blue is proposed. It is found that the proposed method is more accurate for microand mesoporous carbon materials than the one described in GOST (State Standard) 13144-79. It is shown that the method ensures good correlation with the measured specific electric capacitances of the materials and allows us to assess the geometric shape and average size of mesopores in an investigated carbon material.

Keywords

supercapacitors adsorption methylene blue carbon materials graphene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Huang, B. G. Sumpter, and V. Meunier, Chem 14, 6614 (2008).CrossRefGoogle Scholar
  2. 2.
    S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
  3. 3.
    G. Fagerlund, Mater. Constr. 6, 239 (1973).CrossRefGoogle Scholar
  4. 4.
    K. S. Krasnov, Physical Chemistry, 3rd ed. (Vysshaya Shkola, Moscow, 2001), Vol. 2, p. 53 [in Russian].Google Scholar
  5. 5.
    GOST (State Standard) No. 13144-79.Google Scholar
  6. 6.
    S. R. Rubino and E. S. Takeuchi, J. Power Sources 81–82, 373 (1999).CrossRefGoogle Scholar
  7. 7.
    E. Demirbas, M. Kobya, and M. T. Sulak, Bioresour. Technol. 99, 5368 (2008).CrossRefGoogle Scholar
  8. 8.
    T. Liu, Y. Li, Q. Du, G. Wang, et al., Colloids Surf. B: Biointerfaces 90, 197 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Zhao and P. Liu, Desalination 249, 331 (2009).CrossRefGoogle Scholar
  10. 10.
    C. A. Nunes and M. C. Guerreiro, Quim. Nova 34, 472 (2011).CrossRefGoogle Scholar
  11. 11.
    E. V. Ostapova and E. A. Makarevich, Determining the Specific Surface Area of Coke by Methylene Blue (KuzGTU, Kemerovo, 2014) [in Russian].Google Scholar
  12. 12.
    D. A. Razdobreev, Yu. D. Lantukh, A. V. Stryapkov, et al., Vestn. OGU 2, 144 (2004).Google Scholar
  13. 13.
    O. Yazdani, M. Irandoust, J. B. Ghasemi, and Sh. Hooshmand, Dyes Pigments 92, 1031 (2012).CrossRefGoogle Scholar
  14. 14.
    A. R. Tafulo, R. B. Queirós, and G. González-Aguilar, Spectrochim. Acta, Part A 73, 295 (2009).CrossRefGoogle Scholar
  15. 15.
    E. V. Nayanova, E. V. Elipasheva, G. M. Sergeev, and V. P. Sergeeva, Analit. Kontrol’ 19, 154 (2015).Google Scholar
  16. 16.
    M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, J. Hazard. Mater. 177, 70 (2010).CrossRefGoogle Scholar
  17. 17.
    W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  18. 18.
    L. Shahriary and A. A. Athawale, Int. J. Renewable Energy Environ. Eng. 2, 58 (2014).Google Scholar
  19. 19.
    T.-H. Liou and Sh.-J. Wu, J. Hazard. Mater. 171, 693 (2009).CrossRefGoogle Scholar
  20. 20.
    P. M. Yeletsky, V. A. Yakovlev, M. S. Mel’gunov, and V. N. Parmon, Microporous Mesoporous Mater. 121, 34 (2009).CrossRefGoogle Scholar
  21. 21.
    Yu. V. Larichev, P. M. Eletskii, F. V. Tuzikov, and V. A. Yakovlev, Katal. Prom-sti 2, 72 (2013).Google Scholar
  22. 22.
    P. M. Eletskii, V. A. Yakovlev, and V. N. Parmon, Theor. Exp. Chem. 47, 133 (2011).CrossRefGoogle Scholar
  23. 23.
    M. V. Lebedeva, P. M. Yeletsky, A. B. Ayupov, et al., Mater. Renewable Sustainable Energy 4 (20) (2015). doi 10.1007/s40243-015-0061-xGoogle Scholar
  24. 24.
    N. V. Chesnokov, B. N. Kuznetsov, and N. M. Mikova, Zh. Sib. Fed. Univ., Khim. 6, 11 (2013).Google Scholar
  25. 25.
    G. Ali, A. Mehmood, H. Ha Yong, J. Kim, and C. K. Yoon, Sci. Rep. 7, 40910 (2017). doi 10.1038/srep40910CrossRefGoogle Scholar
  26. 26.
    M. J. McAllister, H. C. Schniepp, A. A. Abdala, et al., Chem. Mater. 19, 4396 (2007).CrossRefGoogle Scholar
  27. 27.
    Y. Li and D. Zhao, Chem. Commun. 26, 5598 (2015).CrossRefGoogle Scholar
  28. 28.
    A. A. Maltsev, S. B. Bibikov, and V. N. Kalinichenko, Nanosyst.: Phys., Chem., Math. 7, 175 (2016).Google Scholar
  29. 29.
    E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
  30. 30.
    N. V. Keashnina, O. V. Ovchinnikov, M. S. Smirnov, et al., Vestn. Voronezhsk. Univ., Fiz. Mat. 1, 33 (2006).Google Scholar
  31. 31.
    B. A. Fil, C. Özmetin, and M. Korkmaz, Bull. Korean Chem. Soc. 33, 3184 (2012).CrossRefGoogle Scholar
  32. 32.
    S. T. Yang, S. Chen, Y. Chang, et al., J. Colloid Interface Sci. 359, 24 (2011).CrossRefGoogle Scholar
  33. 33.
    M. Zhao, Peng, and P. Liu, Desalination 249, 331 (2009).CrossRefGoogle Scholar
  34. 34.
    M. A. Rahman, S. M. Ruhul Amin, and A. M. Shafiqul Alam, Dhaka Univ. J. Sci. 60, 185 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Maltsev
    • 1
  • S. B. Bibikov
    • 1
  • V. N. Kalinichenko
    • 2
  • M. V. Gudkov
    • 2
  • V. P. Melnikov
    • 2
  • S. D. Varfolomeev
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations