Heat Effects of the Thermal Decomposition of Amidoboranes of Potassium, Calcium, and Strontium
Chemical Thermodynamics and Thermochemistry
First Online:
Received:
- 4 Downloads
Abstract
Thermal effects of the decomposition of potassium, calcium, and strontium amidoboranes at 354, 421, and 483 K are determined via drop calorimetry. The processes of decomposition are weakly exothermic and accompanied by the evolution of hydrogen. Upon the decomposition of calcium amidoborane at 421 K, a prolonged exothermic process is first observed; it is then followed by an endothermic effect, due possibly to the slow structural rearrangement of the product of decomposition. The solid products of decomposition are characterized by solid-state 11В NMR, FTIR spectroscopy, and mass spectrometry.
Keywords
drop calorimetry amidoboranes potassium calcium strontiumPreview
Unable to display preview. Download preview PDF.
References
- 1.A. Staubitz, A. P. M. Robertson, and I. Manners, Chem. Rev. 110, 4079 (2010). doi 10.1021/cr100088bCrossRefGoogle Scholar
- 2.T. E. Stennett and S. Harder, Chem. Soc. Rev. 45, 1112 (2016). doi 10.1039/c5cs00544bCrossRefGoogle Scholar
- 3.R. Owarzany, P. J. Leszczynski, K. J. Fijalkowski, and W. Grochala, Crystals. 6, 88 (2016). doi 10.3390/cryst6080088CrossRefGoogle Scholar
- 4.Z. T. Xiong, C. K. Yong, G. T. Wu, et al., Nat. Mater. 7, 138 (2008). doi 10.1038/nmat2081CrossRefGoogle Scholar
- 5.Y. Sh. Chua, P. Chen, G. Wu, and Z. Xiong, Chem. Commun. 47, 5116 (2011). doi 10.1039/c0cc05511eCrossRefGoogle Scholar
- 6.K. J. Fijalkowski and W. Grochala, J. Mater. Chem. 19, 2043 (2009). doi 10.1039/b813773kCrossRefGoogle Scholar
- 7.H. V. K. Diyabalanage, T. Nakagawa, R. P. Shrestha, et al., J. Am. Chem. Soc. 132, 11836 (2010). doi 10.1021/ja100167zCrossRefGoogle Scholar
- 8.H. Wu, W. Zhou, and T. Yildirim, J. Am. Chem. Soc. 130, 14834 (2008). doi 10.1021/ja806243fCrossRefGoogle Scholar
- 9.H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger, et al., Angew. Chem. 46, 8995 (2007). doi 10.1002/anie.200702240CrossRefGoogle Scholar
- 10.Q. G. Zhang, C. X. Tang, C. H. Fang, et al., J. Phys. Chem. C 114, 1709 (2010). doi 10.1021/jp9097233CrossRefGoogle Scholar
- 11.Yu. V. Kondrat’ev, A. V. Butlak, I. V. Kazakov, and A. Y. Timoshkin, Thermochim. Acta. 622, 64 (2015). doi 10.1016/j.tca.2015.08.021CrossRefGoogle Scholar
- 12.A. V. Butlak, Yu. V. Kondrat’ev, and A. Yu. Timoshkin, Russ. J. Gen. Chem. 84, 2455 (2014).CrossRefGoogle Scholar
- 13.J. Beres, A. Dodds, A. J. Morabito, and R. M. Adams, Inorg. Chem. 10, 2072 (1971). doi 10.1021/ic50103a049CrossRefGoogle Scholar
- 14.A. T. Luedtke and T. Autrey, Inorg. Chem. 49, 3905 (2010). doi 10.1021/ic100119mCrossRefGoogle Scholar
- 15.D. A. Doinikov, I. V. Kazakov, I. S. Krasnova, and A. Yu. Timoshkin, Russ. J. Phys. Chem. A 91, 1603 (2017).CrossRefGoogle Scholar
- 16.G. Wolf, J. C. van Miltenburgb, and U. Wolf, Thermochim. Acta 317, 111 (1998). doi 10.1016/S0040-6031(98)00381-5CrossRefGoogle Scholar
- 17.G. Xia, J. Chen, W. Sun, et al., Nanoscale 6, 12333 (2014). doi 10.1039/C4NR03257HCrossRefGoogle Scholar
- 18.J. Spielmann, G. Jansen, H. Bandmann, and S. Harder, Angew. Chem. 47, 6290 (2008). doi 10.1002/anie.200802037CrossRefGoogle Scholar
- 19.W. J. Shaw, J. C. Linehan, N. K. Szymczak, et al., Angew. Chem. 47, 7493 (2008). doi 10.1002/anie.200802100CrossRefGoogle Scholar
- 20.Z. Xiong, Y. S. Chua, G. Wu, et al., Chem. Commun. 43, 5595 (2008). doi 10.1039/b812576gCrossRefGoogle Scholar
- 21.K. Shimoda, K. Doi, T. Nakagawa, et al., J. Phys. Chem. C 116, 5957 (2012). doi 10.1021/jp212351fCrossRefGoogle Scholar
- 22.A. V. Butlak, Yu. V. Kondrat’ev, A. S. Mazur, and A. Yu. Timoshkin, Russ. J. Gen. Chem. 85, 2505 (2015).CrossRefGoogle Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018