Skip to main content
Log in

Heat Effects of the Thermal Decomposition of Amidoboranes of Potassium, Calcium, and Strontium

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Thermal effects of the decomposition of potassium, calcium, and strontium amidoboranes at 354, 421, and 483 K are determined via drop calorimetry. The processes of decomposition are weakly exothermic and accompanied by the evolution of hydrogen. Upon the decomposition of calcium amidoborane at 421 K, a prolonged exothermic process is first observed; it is then followed by an endothermic effect, due possibly to the slow structural rearrangement of the product of decomposition. The solid products of decomposition are characterized by solid-state 11В NMR, FTIR spectroscopy, and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Staubitz, A. P. M. Robertson, and I. Manners, Chem. Rev. 110, 4079 (2010). doi 10.1021/cr100088b

    Article  CAS  Google Scholar 

  2. T. E. Stennett and S. Harder, Chem. Soc. Rev. 45, 1112 (2016). doi 10.1039/c5cs00544b

    Article  CAS  Google Scholar 

  3. R. Owarzany, P. J. Leszczynski, K. J. Fijalkowski, and W. Grochala, Crystals. 6, 88 (2016). doi 10.3390/cryst6080088

    Article  Google Scholar 

  4. Z. T. Xiong, C. K. Yong, G. T. Wu, et al., Nat. Mater. 7, 138 (2008). doi 10.1038/nmat2081

    Article  CAS  Google Scholar 

  5. Y. Sh. Chua, P. Chen, G. Wu, and Z. Xiong, Chem. Commun. 47, 5116 (2011). doi 10.1039/c0cc05511e

    Article  CAS  Google Scholar 

  6. K. J. Fijalkowski and W. Grochala, J. Mater. Chem. 19, 2043 (2009). doi 10.1039/b813773k

    Article  CAS  Google Scholar 

  7. H. V. K. Diyabalanage, T. Nakagawa, R. P. Shrestha, et al., J. Am. Chem. Soc. 132, 11836 (2010). doi 10.1021/ja100167z

    Article  CAS  Google Scholar 

  8. H. Wu, W. Zhou, and T. Yildirim, J. Am. Chem. Soc. 130, 14834 (2008). doi 10.1021/ja806243f

    Article  CAS  Google Scholar 

  9. H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger, et al., Angew. Chem. 46, 8995 (2007). doi 10.1002/anie.200702240

    Article  Google Scholar 

  10. Q. G. Zhang, C. X. Tang, C. H. Fang, et al., J. Phys. Chem. C 114, 1709 (2010). doi 10.1021/jp9097233

    Article  CAS  Google Scholar 

  11. Yu. V. Kondrat’ev, A. V. Butlak, I. V. Kazakov, and A. Y. Timoshkin, Thermochim. Acta. 622, 64 (2015). doi 10.1016/j.tca.2015.08.021

    Article  Google Scholar 

  12. A. V. Butlak, Yu. V. Kondrat’ev, and A. Yu. Timoshkin, Russ. J. Gen. Chem. 84, 2455 (2014).

    Article  CAS  Google Scholar 

  13. J. Beres, A. Dodds, A. J. Morabito, and R. M. Adams, Inorg. Chem. 10, 2072 (1971). doi 10.1021/ic50103a049

    Article  Google Scholar 

  14. A. T. Luedtke and T. Autrey, Inorg. Chem. 49, 3905 (2010). doi 10.1021/ic100119m

    Article  CAS  Google Scholar 

  15. D. A. Doinikov, I. V. Kazakov, I. S. Krasnova, and A. Yu. Timoshkin, Russ. J. Phys. Chem. A 91, 1603 (2017).

    Article  CAS  Google Scholar 

  16. G. Wolf, J. C. van Miltenburgb, and U. Wolf, Thermochim. Acta 317, 111 (1998). doi 10.1016/S0040-6031(98)00381-5

    Article  CAS  Google Scholar 

  17. G. Xia, J. Chen, W. Sun, et al., Nanoscale 6, 12333 (2014). doi 10.1039/C4NR03257H

    Article  CAS  Google Scholar 

  18. J. Spielmann, G. Jansen, H. Bandmann, and S. Harder, Angew. Chem. 47, 6290 (2008). doi 10.1002/anie.200802037

    Article  Google Scholar 

  19. W. J. Shaw, J. C. Linehan, N. K. Szymczak, et al., Angew. Chem. 47, 7493 (2008). doi 10.1002/anie.200802100

    Article  CAS  Google Scholar 

  20. Z. Xiong, Y. S. Chua, G. Wu, et al., Chem. Commun. 43, 5595 (2008). doi 10.1039/b812576g

    Article  Google Scholar 

  21. K. Shimoda, K. Doi, T. Nakagawa, et al., J. Phys. Chem. C 116, 5957 (2012). doi 10.1021/jp212351f

    Article  CAS  Google Scholar 

  22. A. V. Butlak, Yu. V. Kondrat’ev, A. S. Mazur, and A. Yu. Timoshkin, Russ. J. Gen. Chem. 85, 2505 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Timoshkin.

Additional information

Original Russian Text © Yu.V. Kondrat’ev, A.V. Butlak, I.V. Kazakov, I.S. Krasnova, M.V. Chislov, A.Yu. Timoshkin, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 4, pp. 533–539.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, Y.V., Butlak, A.V., Kazakov, I.V. et al. Heat Effects of the Thermal Decomposition of Amidoboranes of Potassium, Calcium, and Strontium. Russ. J. Phys. Chem. 92, 640–645 (2018). https://doi.org/10.1134/S0036024418040143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418040143

Keywords

Navigation