Skip to main content
Log in

Dependence of the Physicochemical and Catalytic Properties of Ce0.5Zr0.5O2 Oxide on the Means of Synthesis

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect the means of synthesis have on the texture, phase composition, redox properties, and catalytic activity of binary oxide systems with the composition Ce0.5Zr0.5O2 are studied. The obtained samples are characterized via BET, SEM, DTA, XRD, and Raman spectroscopy. A comparative analysis is performed of the physicochemical properties of biomorphic systems Ce0.5Zr0.5O2 obtained using wood sawdust and cellulose as templates and the properties of binary oxides of the same composition obtained by template-free means. The catalytic properties of the obtained oxide systems Ce0.5Zr0.5O2 are studied in the reaction of carbon black oxidation. It is shown that the texture of the oxide depends on the means of synthesis. When biotemplates are used, fragile porous systems form from thin binary oxide plates containing micro-, meso-, and macropores. Oxide obtained via coprecipitation consists of dense agglomerates with pores around 30 Å in size. In supercritical water, nanoparticles of metal oxide form that are loosely agglomerated. The intermediate spaces between them act as pores more than 100 Å in size. A system of single-phase pseudocubic modification is obtained using a cellulose template. The crystal lattices of all the obtained systems contain a great many defects. It is shown that the system prepared via synthesis in supercritical water has the best oxygen-exchange properties. A comparative analysis is performed of the effect the physicochemical properties of the samples have on their activity in the catalytic oxidation of carbon black.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kaspar, P. Fornasiero, G. Balducci, et al., Inorg. Chim. 349, 217 (2003).

    Article  CAS  Google Scholar 

  2. Z. C. Kang, J. Alloys Compd. 408, 1103 (2006).

    Article  Google Scholar 

  3. R. Crisostomo, R. Neto, and M. Schmal, Appl. Catal. A: Gen. 450, 131 (2013).

    Article  Google Scholar 

  4. D. R. Sellick, A. Ara, and T. Garcia, et al., Appl. Catal. B: Environ. 132–133, 98 (2013).

    Article  Google Scholar 

  5. B. Wang, X.-d. Wu, R. Ran, Zh.-ch. Si, and D. Wenga, J. Mol. Catal. A: Chem. 356, 100 (2012).

    Article  CAS  Google Scholar 

  6. B. Kh. Vu, E. W. Shin, J.-M. Ha, et al., Appl. Catal. A: Gen. 443–444, 59 (2012).

    Article  Google Scholar 

  7. J. P. Cuif, G. Blanchard, O. Touret, et al., SAE 970463 (1997).

    Google Scholar 

  8. G. Vlaic, R. di Monte, P. Fornasiero, et al., J. Catal. 182, 378 (1999).

    Article  CAS  Google Scholar 

  9. M. Yashima, K. Morimoto, N. Ishizawa, and M. Yoshimura, J. Am. Ceram. Soc. 76, 2865 (1993).

    Article  CAS  Google Scholar 

  10. R. di Monte and J. Kaspar, J. Mater. Chem. 15, 633 (2005).

    Article  CAS  Google Scholar 

  11. J. Cao, C. R. Rambo, and H. Sieber, Ceram. Int. 30, 1967 (2004).

    Article  CAS  Google Scholar 

  12. C. R. Rambo, J. Cao, and H. Sieber, Mater. Chem. Phys. 87, 345 (2004).

    Article  CAS  Google Scholar 

  13. A. A. Galkin, B. G. Kostyuk, N. N. Kuznetsova, A. O. Turakulova, V. V. Lunin, and M. Polyakov, Kinet. Catal. 42, 154 (2001).

    Article  CAS  Google Scholar 

  14. J.-R. Kim, W.-J. Myeong, and S.-K. Ihm, Appl. Catal. B: Environ. 71, 57 (2007).

    Article  CAS  Google Scholar 

  15. A. I. Kozlov, D. H. Kim, A. Yezerets, et al., J. Catal. 209, 417 (2002).

    Article  CAS  Google Scholar 

  16. B. K. Vua, E. W. Shina, J. M. Hab, et al., Appl. Catal. A: Gen. 443–444, 59 (2012).

    Article  Google Scholar 

  17. J.-R. Kim, W.-J. Myeong, and S.-K. Ihm, J. Catal. 263, 123 (2009).

    Article  CAS  Google Scholar 

  18. A. O. Turakulova, N. V. Zaletova, and V. V. Lunin, Russ. J. Phys. Chem. A 84, 1309 (2010).

    Article  CAS  Google Scholar 

  19. G. Vlaic, R. D. Monte, P. Fornasiero, et al., J. Catal. 182, 378 (1999).

    Article  CAS  Google Scholar 

  20. L. Cao, L. Pan, C. Ni, Z. Yuana, and S. Wang, Fuel Process. Technol. 91, 306 (2010).

    Article  CAS  Google Scholar 

  21. B. Rivas, R. Lopez-Fonseca, M. A. Gutierrez-Ortiz, and J. I. Gutierrez-Ortiz, Appl. Catal. B: Environ. 101, 317 (2011).

    Article  Google Scholar 

  22. I. Atribak, N. Guillen-Hurtado, A. Bueno-Lupez, and A. Garcna-Garcna, Appl. Surf. Sci. 256, 7706 (2010).

    Article  CAS  Google Scholar 

  23. W. Huang, J. Yang, Ch. Wang, et al., Mater. Res. Bull. 47, 2349 (2012).

    Article  CAS  Google Scholar 

  24. A. Trovarelli, F. Zamar, J. Llorka, et al., J. Catal. 169, 490 (1997).

    Article  CAS  Google Scholar 

  25. S. Damyanova, B. Pawelec, K. Arishtirova, et al., Appl. Catal. A: Gen. 337, 86 (2008).

    Article  CAS  Google Scholar 

  26. G.-f. Li, Q. Wanga, B. Zhao, and R.-x. Zhou, Fuel 92, 360 (2012).

    Article  CAS  Google Scholar 

  27. I. Kosacki, T. Suzuki, H. U. Anderson, and P. Colomban, Solid State Ionics 149, 99 (2002).

    CAS  Google Scholar 

  28. H. C. Yao and Y. F. Yuyao, J. Catal. 86, 254 (1984).

    Article  CAS  Google Scholar 

  29. Z. Yuan, C. Ni, C. Zhang, et al., Catal. Today 146, 124 (2009).

    Article  CAS  Google Scholar 

  30. M. Daturi, E. Finocchio, C. Binet, et al., J. Phys. Chem. B 104, 9186 (2000).

    Article  CAS  Google Scholar 

  31. J. Kaspar, P. Fornasiero, and M. Graziani, Catal. Today 50, 285 (1999).

    Article  CAS  Google Scholar 

  32. B. R. Stanmore, J. F. Brilhac, and P. Gilot, Carbon 39, 2247 (2001).

    Article  CAS  Google Scholar 

  33. P. Miceli, S. Bensaid, N. Russo, and D. Fino, Chem. Eng. J. 278, 190 (2015).

    Article  CAS  Google Scholar 

  34. P. A. Kumar, M. D. Tanwar, S. Bensaid, et al., Chem. Eng. J. 207–208, 258 (2012).

    Article  Google Scholar 

  35. S. Bensaid, N. Russo, and N. Fino, Catal. Today 216, 57 (2013).

    Article  CAS  Google Scholar 

  36. P. Miceli, S. Bensaid, N. Russo, and D. Fino, Nanoscale Res. Lett. 9, 254 (2014).

    Article  Google Scholar 

  37. E. Aneggi, C. Leitenburg, G. Dolcetti, and A. Trovarelli, Catal. Today 114, 40 (2006).

    Article  CAS  Google Scholar 

  38. X. Wu, D. Liu, K. Li, J. Li, and D. Weng, Catal. Commun. 8, 1274 (2007).

    Article  CAS  Google Scholar 

  39. E. Aneggi, M. Boaro, C. Leitenburg, et al., Catal. Today 112, 94 (2006).

    Article  CAS  Google Scholar 

  40. E. Saab, E. Abi-Aad, M. N. Bokova, et al., Carbon 45, 561 (2007).

    Article  CAS  Google Scholar 

  41. B. A. Setten, J. M. Schouten, M. Makkee, and J. A. Moulijn, Appl. Catal. B: Environ. 28, 253 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kharlanov.

Additional information

Original Russian Text © A.N. Kharlanov, A.O. Turakulova, A.V. Levanov, V.V. Lunin, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 4, pp. 577–588.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharlanov, A.N., Turakulova, A.O., Levanov, A.V. et al. Dependence of the Physicochemical and Catalytic Properties of Ce0.5Zr0.5O2 Oxide on the Means of Synthesis. Russ. J. Phys. Chem. 92, 678–688 (2018). https://doi.org/10.1134/S003602441804012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441804012X

Keywords

Navigation