Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 678–688 | Cite as

Dependence of the Physicochemical and Catalytic Properties of Ce0.5Zr0.5O2 Oxide on the Means of Synthesis

  • A. N. Kharlanov
  • A. O. Turakulova
  • A. V. Levanov
  • V. V. Lunin
Chemical Kinetics and Catalysis

Abstract

The effect the means of synthesis have on the texture, phase composition, redox properties, and catalytic activity of binary oxide systems with the composition Ce0.5Zr0.5O2 are studied. The obtained samples are characterized via BET, SEM, DTA, XRD, and Raman spectroscopy. A comparative analysis is performed of the physicochemical properties of biomorphic systems Ce0.5Zr0.5O2 obtained using wood sawdust and cellulose as templates and the properties of binary oxides of the same composition obtained by template-free means. The catalytic properties of the obtained oxide systems Ce0.5Zr0.5O2 are studied in the reaction of carbon black oxidation. It is shown that the texture of the oxide depends on the means of synthesis. When biotemplates are used, fragile porous systems form from thin binary oxide plates containing micro-, meso-, and macropores. Oxide obtained via coprecipitation consists of dense agglomerates with pores around 30 Å in size. In supercritical water, nanoparticles of metal oxide form that are loosely agglomerated. The intermediate spaces between them act as pores more than 100 Å in size. A system of single-phase pseudocubic modification is obtained using a cellulose template. The crystal lattices of all the obtained systems contain a great many defects. It is shown that the system prepared via synthesis in supercritical water has the best oxygen-exchange properties. A comparative analysis is performed of the effect the physicochemical properties of the samples have on their activity in the catalytic oxidation of carbon black.

Keywords

cerium-zirconium oxides synthesis methods TPR SEM XRD Raman spectroscopy carbon black oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kaspar, P. Fornasiero, G. Balducci, et al., Inorg. Chim. 349, 217 (2003).CrossRefGoogle Scholar
  2. 2.
    Z. C. Kang, J. Alloys Compd. 408, 1103 (2006).CrossRefGoogle Scholar
  3. 3.
    R. Crisostomo, R. Neto, and M. Schmal, Appl. Catal. A: Gen. 450, 131 (2013).CrossRefGoogle Scholar
  4. 4.
    D. R. Sellick, A. Ara, and T. Garcia, et al., Appl. Catal. B: Environ. 132–133, 98 (2013).CrossRefGoogle Scholar
  5. 5.
    B. Wang, X.-d. Wu, R. Ran, Zh.-ch. Si, and D. Wenga, J. Mol. Catal. A: Chem. 356, 100 (2012).CrossRefGoogle Scholar
  6. 6.
    B. Kh. Vu, E. W. Shin, J.-M. Ha, et al., Appl. Catal. A: Gen. 443–444, 59 (2012).CrossRefGoogle Scholar
  7. 7.
    J. P. Cuif, G. Blanchard, O. Touret, et al., SAE 970463 (1997).Google Scholar
  8. 8.
    G. Vlaic, R. di Monte, P. Fornasiero, et al., J. Catal. 182, 378 (1999).CrossRefGoogle Scholar
  9. 9.
    M. Yashima, K. Morimoto, N. Ishizawa, and M. Yoshimura, J. Am. Ceram. Soc. 76, 2865 (1993).CrossRefGoogle Scholar
  10. 10.
    R. di Monte and J. Kaspar, J. Mater. Chem. 15, 633 (2005).CrossRefGoogle Scholar
  11. 11.
    J. Cao, C. R. Rambo, and H. Sieber, Ceram. Int. 30, 1967 (2004).CrossRefGoogle Scholar
  12. 12.
    C. R. Rambo, J. Cao, and H. Sieber, Mater. Chem. Phys. 87, 345 (2004).CrossRefGoogle Scholar
  13. 13.
    A. A. Galkin, B. G. Kostyuk, N. N. Kuznetsova, A. O. Turakulova, V. V. Lunin, and M. Polyakov, Kinet. Catal. 42, 154 (2001).CrossRefGoogle Scholar
  14. 14.
    J.-R. Kim, W.-J. Myeong, and S.-K. Ihm, Appl. Catal. B: Environ. 71, 57 (2007).CrossRefGoogle Scholar
  15. 15.
    A. I. Kozlov, D. H. Kim, A. Yezerets, et al., J. Catal. 209, 417 (2002).CrossRefGoogle Scholar
  16. 16.
    B. K. Vua, E. W. Shina, J. M. Hab, et al., Appl. Catal. A: Gen. 443–444, 59 (2012).CrossRefGoogle Scholar
  17. 17.
    J.-R. Kim, W.-J. Myeong, and S.-K. Ihm, J. Catal. 263, 123 (2009).CrossRefGoogle Scholar
  18. 18.
    A. O. Turakulova, N. V. Zaletova, and V. V. Lunin, Russ. J. Phys. Chem. A 84, 1309 (2010).CrossRefGoogle Scholar
  19. 19.
    G. Vlaic, R. D. Monte, P. Fornasiero, et al., J. Catal. 182, 378 (1999).CrossRefGoogle Scholar
  20. 20.
    L. Cao, L. Pan, C. Ni, Z. Yuana, and S. Wang, Fuel Process. Technol. 91, 306 (2010).CrossRefGoogle Scholar
  21. 21.
    B. Rivas, R. Lopez-Fonseca, M. A. Gutierrez-Ortiz, and J. I. Gutierrez-Ortiz, Appl. Catal. B: Environ. 101, 317 (2011).CrossRefGoogle Scholar
  22. 22.
    I. Atribak, N. Guillen-Hurtado, A. Bueno-Lupez, and A. Garcna-Garcna, Appl. Surf. Sci. 256, 7706 (2010).CrossRefGoogle Scholar
  23. 23.
    W. Huang, J. Yang, Ch. Wang, et al., Mater. Res. Bull. 47, 2349 (2012).CrossRefGoogle Scholar
  24. 24.
    A. Trovarelli, F. Zamar, J. Llorka, et al., J. Catal. 169, 490 (1997).CrossRefGoogle Scholar
  25. 25.
    S. Damyanova, B. Pawelec, K. Arishtirova, et al., Appl. Catal. A: Gen. 337, 86 (2008).CrossRefGoogle Scholar
  26. 26.
    G.-f. Li, Q. Wanga, B. Zhao, and R.-x. Zhou, Fuel 92, 360 (2012).CrossRefGoogle Scholar
  27. 27.
    I. Kosacki, T. Suzuki, H. U. Anderson, and P. Colomban, Solid State Ionics 149, 99 (2002).Google Scholar
  28. 28.
    H. C. Yao and Y. F. Yuyao, J. Catal. 86, 254 (1984).CrossRefGoogle Scholar
  29. 29.
    Z. Yuan, C. Ni, C. Zhang, et al., Catal. Today 146, 124 (2009).CrossRefGoogle Scholar
  30. 30.
    M. Daturi, E. Finocchio, C. Binet, et al., J. Phys. Chem. B 104, 9186 (2000).CrossRefGoogle Scholar
  31. 31.
    J. Kaspar, P. Fornasiero, and M. Graziani, Catal. Today 50, 285 (1999).CrossRefGoogle Scholar
  32. 32.
    B. R. Stanmore, J. F. Brilhac, and P. Gilot, Carbon 39, 2247 (2001).CrossRefGoogle Scholar
  33. 33.
    P. Miceli, S. Bensaid, N. Russo, and D. Fino, Chem. Eng. J. 278, 190 (2015).CrossRefGoogle Scholar
  34. 34.
    P. A. Kumar, M. D. Tanwar, S. Bensaid, et al., Chem. Eng. J. 207–208, 258 (2012).CrossRefGoogle Scholar
  35. 35.
    S. Bensaid, N. Russo, and N. Fino, Catal. Today 216, 57 (2013).CrossRefGoogle Scholar
  36. 36.
    P. Miceli, S. Bensaid, N. Russo, and D. Fino, Nanoscale Res. Lett. 9, 254 (2014).CrossRefGoogle Scholar
  37. 37.
    E. Aneggi, C. Leitenburg, G. Dolcetti, and A. Trovarelli, Catal. Today 114, 40 (2006).CrossRefGoogle Scholar
  38. 38.
    X. Wu, D. Liu, K. Li, J. Li, and D. Weng, Catal. Commun. 8, 1274 (2007).CrossRefGoogle Scholar
  39. 39.
    E. Aneggi, M. Boaro, C. Leitenburg, et al., Catal. Today 112, 94 (2006).CrossRefGoogle Scholar
  40. 40.
    E. Saab, E. Abi-Aad, M. N. Bokova, et al., Carbon 45, 561 (2007).CrossRefGoogle Scholar
  41. 41.
    B. A. Setten, J. M. Schouten, M. Makkee, and J. A. Moulijn, Appl. Catal. B: Environ. 28, 253 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Kharlanov
    • 1
  • A. O. Turakulova
    • 1
  • A. V. Levanov
    • 1
  • V. V. Lunin
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations