Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 799–803 | Cite as

Krafft Temperature of 1-Alkyl-4-Aza-1-Azoniabicyclo[2.2.2]octane Bromide Complexes with Transition Metal Salts

  • M. R. Ibatullina
  • E. P. Zhil’tsova
  • S. S. Lukashenko
  • M. M. Anuar
  • M. P. Kutyreva
  • L. Ya. Zakharova
Colloid Chemistry and Electrochemistry


The Krafft temperature (ТKr) of 1-alkyl-4-aza-1-azoniabicyclo[2.2.2]octane bromides (Alk = n-C n H2n + 1, n = 14, 16, 18) (D-n) and complexes of them with transition metals [Cu(II), Ni(II), Co(II), La(III)] in water is determined via conductometry and compared their corresponding acyclic analogs (alkyltrimethylammonium bromides). The dependence of the complexes’ ТKr on the structure of the inorganic salts and the hydrophobicity of ligands is established. It is shown that the complexation of D-n with metal nitrates and the shortening of the ligand hydrocarbon radical reduce ТKr.


cationic surfactants transition metals complexes the Krafft temperature conductometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hirata, A. Ohira, and N. Iimura, Langmuir 12, 6044 (1996).CrossRefGoogle Scholar
  2. 2.
    V. G. Carolina and B. L. Bales, J. Phys. Chem. B 107, 5398 (2003).CrossRefGoogle Scholar
  3. 3.
    M. S. Bakshi and R. Sood, Colloids Surf. A: Physicochem. Eng. Asp. 233, 203 (2004).CrossRefGoogle Scholar
  4. 4.
    J. Z. Manojlovic, Thermal Sci. 16, S631 (2012).CrossRefGoogle Scholar
  5. 5.
    S. K. Mehta, R. Kaur, and G. R. Chaudhary, Colloids Surf. A: Physicochem. Eng. Asp. 403, 103 (2012).CrossRefGoogle Scholar
  6. 6.
    R. Kaur and S. K. Mehta, Coord. Chem. Rev. 262, 37 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Bhattacharya and N. Kumari, Coord. Chem. Rev. 253, 2133 (2009).CrossRefGoogle Scholar
  8. 8.
    E. P. Zhil’tsova, M. R. Ibatullina, S. S. Lukashenko, T. N. Pashirova, A. D. Voloshina, V. V. Zobov, S. A. Ziganshina, M. P. Kutyreva, and L. Ya. Zakharova, Russ. Chem. Bull. 65, 1365 (2016).CrossRefGoogle Scholar
  9. 9.
    E. P. Zhiltsova, S. S. Lukashenko, M. R. Ibatullina, et al., in Proceedings of the 8th International Symposium on Design and Synthesis of Supramolecular Architectures, Kazan, Russia, 2016, p. 110.Google Scholar
  10. 10.
    S. S. Lukashenko, E. P. Zhiltsova, T. N. Pashirova, et al., in Proceedings of the 20th Mendeleev Congress on General and Applied Chemistry, Vol. 2a: Abstracts (Russ. Akad. Nauk, Ekaterinburg, 2016), p. 379.Google Scholar
  11. 11.
    T. N. Pashirova, E. P. Zhil’tsova, R. R. Kashapov, S. S. Lukashenko, A. I. Litvinov, M. K. Kadirov, L. Ya. Zakharova, and A. I. Konovalov, Russ. Chem. Bull., Int. Ed. 59, 1745 (2010).CrossRefGoogle Scholar
  12. 12.
    M. M. Islam, M. R. Rahman, and M. N. Islam, Int. J. Sci. Eng. Res. 6, 1508 (2015).Google Scholar
  13. 13.
    E. P. Zhiltsova, S. S. Lukashenko, T. N. Pashirova, et al., J. Mol. Liq. A 210, 136 (2015).CrossRefGoogle Scholar
  14. 14.
    K. R. Lange, Surfactants: Synthesis, Properties, Analysis, Application (Professiya, St. Petersburg, 2004) [in Russian].Google Scholar
  15. 15.
    E. F. Bukanova, Colloid Chemistry of Surfactants (Mosk. Inst. Tonk. Khim. Tekhnol. im. M. V. Lomonosova, Moscow, 2006) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. R. Ibatullina
    • 1
  • E. P. Zhil’tsova
    • 1
  • S. S. Lukashenko
    • 1
  • M. M. Anuar
    • 1
  • M. P. Kutyreva
    • 2
  • L. Ya. Zakharova
    • 1
  1. 1.Arbuzov Institute of Organic and Physical ChemistryRussian Academy of SciencesKazanRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations