Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 804–808 | Cite as

Photoisomerization of Styryl Derivatives of Pyridine N-Oxide

  • Yu. A. Gubarev
  • N. Sh. Lebedeva
  • E. S. Yurina
  • V. P. Andreev
  • A. I. V’yugin
Photochemistry and Magnetochemistry

Abstract

The trans–cis- and cis–trans-isomerization of styryl derivatives of heterocyclic N-oxides in acetonitrile and ethanol is studied. The isomerization quantum yields and spectral characteristics of the cis-form of the investigated N-oxides are determined. No thermally induced cis–trans-conversion is detected.

Keywords

N-oxides trans–cis-isomerization photoisomerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-C. Ko and V. W.-W. Yam, J. Mater. Chem. 20, 2063 (2010).CrossRefGoogle Scholar
  2. 2.
    W. Szymanski, J. M. Beierle, H. A. Kistemaker, et al., Chem. Rev. 113, 6114 (2013).CrossRefGoogle Scholar
  3. 3.
    W. E. Moerner, Rev. Mod. Phys. 87, 1183 (2015).CrossRefGoogle Scholar
  4. 4.
    C. J. Beggs, E. Wellmann, and H. Grisebach, Photomorphogenesis in Plants (Springer, 1986), p. 467.CrossRefGoogle Scholar
  5. 5.
    B. Soberats, E. Uchida, M. Yoshio, et al., J. Am. Chem. Soc. 136, 9552 (2014).CrossRefGoogle Scholar
  6. 6.
    G. Cosquer, M. Morimoto, M. Irie, et al., Dalton Trans. 44, 5996 (2015).CrossRefGoogle Scholar
  7. 7.
    C. W. Tang, S. A. VanSlyke, and C. Chen, J. Appl. Phys. 65, 3610 (1989).CrossRefGoogle Scholar
  8. 8.
    J. Burroughes, D. Bradley, A. Brown, et al., Nature 347, 539 (1990).CrossRefGoogle Scholar
  9. 9.
    R. Friend, R. Gymer, A. Holmes, et al., Nature 397 (6715), 121 (1999).CrossRefGoogle Scholar
  10. 10.
    R. Markov, A. Plekhanov, S. Rautian, et al., Opt. Spectrosc. 85, 588 (1998).Google Scholar
  11. 11.
    B. Tylkowski, R. Jastrzab, and M. Skrobanska, Phys. Sci. Rev. 1 (4) (2016).Google Scholar
  12. 12.
    Y. Gubarev, N. S. Lebedeva, S. Golubev, et al., Macroheterocycles 6, 106 (2013).CrossRefGoogle Scholar
  13. 13.
    G. Titskii and M. Turovskaya, Zh. Org. Khim. 28, 1911 (1992).Google Scholar
  14. 14.
    A. Weissberger, E. S. Proskauer, J. A. Riddick, and E. E. Toops, Technique of Organic Chemistry (Interscience, New York, 1955), Vol. 7.Google Scholar
  15. 15.
    C. Hatchard and C. A. Parker, Proc. R. Soc. London A 235, 518 (1956).CrossRefGoogle Scholar
  16. 16.
    E. Fischer, J. Phys. Chem. 71, 3704 (1967).CrossRefGoogle Scholar
  17. 17.
    S. N. Golubev, N. S. Lebedeva, Y. A. Gubarev, et al., Russ. J. Gen. Chem. 84, 2107 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. A. Gubarev, N. S. Lebedeva, V. Andreev, and G. Girichev, Russ. J. Gen. Chem. 79, 1183 (2009).CrossRefGoogle Scholar
  19. 19.
    Y. A. Gubarev, N. S. Lebedeva, V. Andreev, et al., Russ. J. Gen. Chem. 77, 1093 (2007).CrossRefGoogle Scholar
  20. 20.
    Y. A. Gubarev, S. Golubev, N. S. Lebedeva, et al., Russ. J. Gen. Chem. 87, 619 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. A. Gubarev
    • 1
  • N. Sh. Lebedeva
    • 1
  • E. S. Yurina
    • 1
  • V. P. Andreev
    • 2
  • A. I. V’yugin
    • 1
  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Petrozavodsk State UniversityPetrozavodskRussia

Personalised recommendations