Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 656–662 | Cite as

Kinetics and Mechanism of the Oxidative Conversion of n-Amyl Alcohol to Valeric Acid on a Modified Zeolite Catalyst

  • A. M. Aliev
  • M. F. Bakhmanov
  • F. A. Agaev
  • V. Sh. Agaev
  • Z. A. Shabanova
  • A. R. Safarov
Chemical Kinetics and Catalysis
  • 17 Downloads

Abstract

The catalytic activity of natural and synthetic mordenites modified with Cu2+, Zn2+, and Pd2+ cations via ion exchange was studied in the oxidative conversion of n-amyl alcohol to valeric acid under the action of oxygen. It is established that the highest activity and selectivity in this reaction is exhibited by mordenite hydrothermally synthesized from kaolinite and containing 3.0 wt % Cu2+, 0.1 wt % Pd2+, and 2.0 wt % Zn2+. The kinetics of this catalytic reaction is studied. Based on the experimental data, a possible stepwise mechanism is proposed, and a theoretically grounded kinetic model of the process is developed.

Keywords

n-amyl alcohol valeric acid mordernite mechanism kinetic model kinetic constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Brailovskii, O. N. Temkin, and I. V. Trofimova, Probl. Kinet. Katal. 19, 146 (1985).Google Scholar
  2. 2.
    T. V. Lazareva, N. A. Osipova, and L. N. Kurina, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 33 (4), 49 (1990).Google Scholar
  3. 3.
    L. N. Kurina, A. A. Davudov, and N. A. Osipova, in Proceedings of the 5th International Symposium on Relations between Homogenous and Heterogenous Catalysis, Novosibirsk, 1986, p. 140.Google Scholar
  4. 4.
    G. S. Wong, D. D. Kragten, and J. M. Vohs, J. Phys. Chem. B 105, 1366 (2001).CrossRefGoogle Scholar
  5. 5.
    A. M. Aliev, S. M. Medzhidova, A. A. Sarydzhanov, Z. A. Shabanova, et al., in Proceedings of the 6th All- Russia Zeolite Conference on Zeolites and Mesoporous Materials: Achievements and Perspectives, Zvenigorod, 2011, p. 177.Google Scholar
  6. 6.
    Z. A. Alikhanova, A. M. Aliev, A. A. Sarydzhanov, and M. F. Bakhmanov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., No. 11, 106 (2009).Google Scholar
  7. 7.
    A. M. Aliyev, Z. A. Shabanova, and F. V. Aliyev, Eur. Appl. Sci., No. 5, 67 (2015).Google Scholar
  8. 8.
    A. M. Aliev, S. M. Medzhidova, Z. A. Shabanova, et al., in Proceedings of the Russian Congress on Catalysis ROSKATALIZ, Novosibirsk, 2011, Vol. 2, p. 186.Google Scholar
  9. 9.
    A. M. Aliev, S. M. Medzhidova, A. A. Sarydzhanov, K. I. Matiev, et al., Azerb. Khim. Zh., No. 4, 9 (2011).Google Scholar
  10. 10.
    T. N. Shakhtakhtinskii, A. M. Aliev, A. R. Kuliev, S. M. Medzhidova, K. I. Matiev, M. Kh. Muradov, and A. Yu. Kasumzade, Kinet. Catal. 37, 267 (1996).Google Scholar
  11. 11.
    S. K. Ogorodnikova, Petroleum Chemist’s Handbook (Khimiya, Leningrad, 1978), Vol. 1 [in Russian].Google Scholar
  12. 12.
    T. N. Shakhtakhtinskii, M. F. Bakhmanov, and G. I. Kelbaliev, Methods of Optimization of Chemical Technology Processes with Computer Programs (Elm, Baku, 1985) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Aliev
    • 1
  • M. F. Bakhmanov
    • 1
  • F. A. Agaev
    • 1
  • V. Sh. Agaev
    • 1
  • Z. A. Shabanova
    • 1
  • A. R. Safarov
    • 1
  1. 1.Nagiev Institute of Catalysis and Inorganic ChemistryBakuAzerbaijan

Personalised recommendations