Advertisement

Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2539–2547 | Cite as

Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

  • Zhou Yongquan
  • Fang Chunhui
  • Fang Yan
  • Zhu Fayan
  • Ge Haiwen
  • Liu Hongyan
Structure of Matter and Quantum Chemistry
  • 22 Downloads

Abstract

Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1–12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium–oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance (rNa–O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

Keywords

sodium ion DFT CPMD micro hydration RDF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. R. Smirnov and V. N. Trostin, Russ. J. Gen. Chem 78, 1643 (2008).CrossRefGoogle Scholar
  2. 2.
    X. Li, Y. Tu, H. Tian, and H. Agren, J. Chem. Phys. 132, 104505 (2010).CrossRefGoogle Scholar
  3. 3.
    Y. Liu, H. Lu, Y. Wu, T. Hu, and Q. Li, J. Chem. Phys. 132, 124503 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Wang, H. Yi, H. Li, Q. Dai, Z. Cao, and Y. Lu, Acta Phys. Chim. Sin. 31, 1035 (2015).Google Scholar
  5. 5.
    J. Lu, Y. Yu, and Y. Li, Fluid Phase Equilib. 85, 81 (1993).CrossRefGoogle Scholar
  6. 6.
    Y. Yu, G. Gao, and Y. Li, Fluid Phase Equilib. 173, 23 (2000).CrossRefGoogle Scholar
  7. 7.
    Y. Yu, G. Gao, J. Daridon, and B. Lagourette, Fluid Phase Equilib. 206, 205 (2003).CrossRefGoogle Scholar
  8. 8.
    W. Xie and Y. Gao, J. Phys. Chem. Lett. 4, 4247 (2013).CrossRefGoogle Scholar
  9. 9.
    H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).CrossRefGoogle Scholar
  10. 10.
    P. R. Smirnov and V. N. Trostin, Russ. J. Gen. Chem. 77, 844 (2007).CrossRefGoogle Scholar
  11. 11.
    S. Varma and S. B. Rempe, Biophys. Chem. 124, 192 (2006).CrossRefGoogle Scholar
  12. 12.
    T. Megyes, S. Bálint, T. Grósz, T. Radnai, I. Bakó, and P. Sipos, J. Chem. Phys. 128, 044501 (2008).CrossRefGoogle Scholar
  13. 13.
    T. Megyes, S. Bálint, E. Peter, T. Grósz, I. Bakó, and H. Krienke, J. Phys. Chem. B 113, 4054 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Zhou, C. Fang, Y. Fang, F. Zhu, S. Tao, and S. Xu, Russ. J. Phys. Chem. A 86, 1236 (2012).CrossRefGoogle Scholar
  15. 15.
    Y. Zhou, C. Fang, and Y. Fang, Acta Phys. Chim. Sin. 26, 2323 (2010).Google Scholar
  16. 16.
    J. Mähler and I. Persson, Inorg. Chem. 51, 425 (2012).CrossRefGoogle Scholar
  17. 17.
    A. Bankura, V. Carnevale, and M. L. Klein, Mol. Phys. 112, 1448 (2014).CrossRefGoogle Scholar
  18. 18.
    S. S. Azam, H. Zaheerul, and M. Q. Fatmi, J. Mol. Liq. 153, 95 (2010).CrossRefGoogle Scholar
  19. 19.
    R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, J. Phys. Chem. B 111, 13570 (2007).CrossRefGoogle Scholar
  20. 20.
    A. Bankura, V. Carnevale, and M. L. Klein, J. Chem. Phys. 138, 014501 (2013).CrossRefGoogle Scholar
  21. 21.
    A. C. Olleta, H. M. Lee, and K. S. Kim, J. Chem. Phys. 124, 024321 (2006).CrossRefGoogle Scholar
  22. 22.
    A. C. Olleta, H. M. Lee, and K. S. Kim, J. Chem. Phys. 126, 144311 (2007).CrossRefGoogle Scholar
  23. 23.
    J. S. Rao, T. C. Dinadayalane, J. Leszczynski, and G. N. Sastry, J. Phys. Chem. A 112, 12944 (2008).CrossRefGoogle Scholar
  24. 24.
    T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  25. 25.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.01 (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
  26. 26.
    CPMD V3.11 CIC (MPI, 1997–2001).Google Scholar
  27. 27.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  28. 28.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  29. 29.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
  30. 30.
    F. Xia, H. Yi, and D. Zeng, J. Phys. Chem. A 114, 8406 (2010).CrossRefGoogle Scholar
  31. 31.
    Y. Zhou, Y. Fang, C. Fang, F. Zhu, H. Ge, and Q. Chen, J. Phys. Chem. B 117, 11709 (2013).CrossRefGoogle Scholar
  32. 32.
    K. G. Spears and S. H. Kim, J. Phys. Chem. 80, 673 (1976).CrossRefGoogle Scholar
  33. 33.
    C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comput. Chem. 17, 49 (1996).CrossRefGoogle Scholar
  34. 34.
    S. Reiser, S. Deublein, J. Vrabec, and H. Hasse, J. Chem. Phys. 140, 044504 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Zhou Yongquan
    • 1
  • Fang Chunhui
    • 1
  • Fang Yan
    • 1
  • Zhu Fayan
    • 1
  • Ge Haiwen
    • 1
  • Liu Hongyan
    • 1
    • 2
  1. 1.Institute of Salt LakesChinese Academy of ScienceXiningP.R. China
  2. 2.University of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations