Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2558–2568 | Cite as

Trends in Geometric, Energetic, Electronic, and Magnetic Properties of Vanadium–Copper Clusters Cu n V with n = 1–12: Density Functional Calculations

Structure of Matter and Quantum Chemistry

Abstract

A systematic quantum chemical investigation on the geometric, energetic, electronic and magnetic properties of vanadium-copper nanoalloy clusters (n = 1–12) is performed by using BPW91/LanL2DZ calculations. The calculated results show that the structural evolution of Cu n V clusters favors a compact and icosahedral growth pattern and V atom favors occupying the most highly coordinated position. Energetic properties show that doping of one V atom contributes to strengthening the stability of the copper clusters with the growth of the clusters. The stacking mode of clusters apparently has a more important effect on the clusters stability than the electronic structure. However, electronic structures have some contribution to the stability of Cu n V clusters as well. The electronic properties of Cu n V are analyzed through vertical ionization potential (VIP), vertical electron affinity (VEA) and chemical hardness (η). The magnetism calculations show that when doping V atom in copper clusters, the cluster system generate a very large magnetic moment and its contribution mainly comes from the 3d orbital of doping-V atom.

Keywords

CunV (n = 1–12) clusters geometrical structures relative stability electronic properties magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Morse, Chem. Rev. 86, 1049 (1986).CrossRefGoogle Scholar
  2. 2.
    J. P. Wilcoxon and B. L. Abram, Synthesis, Chem. Soc. Rev. 35, 1162 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Brack, Rev. Mod. Phys. 65, 677 (1993).CrossRefGoogle Scholar
  4. 4.
    K. R. Harikumar, S. Ghosh, and C. N. R. Rao, J. Phys. Chem. A 101, 536 (1997).CrossRefGoogle Scholar
  5. 5.
    J. A. Alonso and L. C. Balbás, Struct. Bond. 80, 228 (1993).Google Scholar
  6. 6.
    I. Katakuse and T. Ichihara, Int. J. Mass Spectrom. Ion Process. 67, 229 (1985).CrossRefGoogle Scholar
  7. 7.
    J. Ho and K. M. Ervin, J. Chem. Phys. 93, 6987 (1990).CrossRefGoogle Scholar
  8. 8.
    W. A. de Heer, W. D. Knight, M. Y. Chou, and M. L. Cohen, Solid State Phys. 40, 93 (1987).CrossRefGoogle Scholar
  9. 9.
    L. M. Wang, S. Bulusu, W. Huang, et al., J. Am. Chem. Soc. 129, 15136 (2007).CrossRefGoogle Scholar
  10. 10.
    D. Dong, X. Y. Kuang, J. J. Guo, and B. X. Zheng, Physica A 389, 5216 (2010).CrossRefGoogle Scholar
  11. 11.
    M. A. Tafoughalt and M. Samah, Comput. Theor. Chem. 1033, 23 (2014).CrossRefGoogle Scholar
  12. 12.
    J. H. Sinfelt, Chem. Res. 10, 15 (1977).CrossRefGoogle Scholar
  13. 13.
    B. C. Gates, Chem. Rev. 95, 511 (1995).CrossRefGoogle Scholar
  14. 14.
    K. Judai, S. Abbet, A. S. Worz, et al., J. Am. Chem. Soc. 126, 2732 (2004).CrossRefGoogle Scholar
  15. 15.
    G. Guzmán-Ramirez, F. Aguilera-Granja, and J. Rolbles, Eur. Phys. J. D 57, 49 (2010).CrossRefGoogle Scholar
  16. 16.
    D. E. Power, S. G. Hansen, M. E. Geusic, et al., J. Chem. Phys. 78, 2866 (1983).CrossRefGoogle Scholar
  17. 17.
    C. L. Pettiette, S. H. Yang, M. J. Craycraft, et al., J. Chem. Phys. 88, 5377 (1988).CrossRefGoogle Scholar
  18. 18.
    M. B. Knickelbein, Chem. Phys. Lett. 192, 129 (1992).CrossRefGoogle Scholar
  19. 19.
    P. Jaque and A. Toro-Labbé, J. Chem. Phys. 117, 3208 (2002).CrossRefGoogle Scholar
  20. 20.
    J. G. Han, L. S. Sheng, Y. W. Zhang, and J. A. Morales, Chem. Phys. 294, 211 (2003).CrossRefGoogle Scholar
  21. 21.
    Y. J. Ko, H. Wang, K. Pradhan, et al., J. Chem. Phys. 135, 44312 (2011).CrossRefGoogle Scholar
  22. 22.
    C. G. Li, X. W. Zhou, Y. N. Tang, et al., Struct., Comput. Theor. Chem. 1055, 51 (2015).CrossRefGoogle Scholar
  23. 23.
    X. Dong, L. Guo, C. Wen, et al., Russ. J. Phys. Chem. A 88, 1113 (2014).CrossRefGoogle Scholar
  24. 24.
    F. Yang, Q. Sun, L. L. Ma, et al., J. Phys. Chem. A 114, 8417 (2010).CrossRefGoogle Scholar
  25. 25.
    Y. Kadioglu, G. Gökoglu, and O. Üzengi Aktürk, Thin Solid Films 579, 153 (2015).CrossRefGoogle Scholar
  26. 26.
    Y. Yang and D. J. Cheng, J. Phys. Chem. C 118, 250 (2014).CrossRefGoogle Scholar
  27. 27.
    W. Ling, D. Dong, S. J. Wang, and Z. Q. Zhao, J. Phys. Chem. Solids 76, 10 (2015).CrossRefGoogle Scholar
  28. 28.
    Y. H. Zhou, Z. Zeng, and X. Ju, Microeletron. J. 40, 832 (2009).CrossRefGoogle Scholar
  29. 29.
    X. Liu, A. Wang, X. Wang, et al., Chem. Commun. 27, 3187 (2008).CrossRefGoogle Scholar
  30. 30.
    E. M. Spain and M. D. Morse, J. Chem. Phys. 96, 2511 (1992).CrossRefGoogle Scholar
  31. 31.
    A. Kramida, Y. Ralchenko, and J. Reader, NIST Atomic Spectra Database, Vers. 5.1 (Natl. Inst. Standards and Technol., Gaithersburg, MD, 2013). http://Physics.nist.gov/asd.Google Scholar
  32. 32.
    X. X. Jin, J. G. Du, G. Jiang, et al., Eur. Phys. J. D 64, 323 (2011).CrossRefGoogle Scholar
  33. 33.
    K. Pradhan, P. Sen, J. U. Reveles, et al., Phys. Rev. B 77, 045408 (2008).CrossRefGoogle Scholar
  34. 34.
    P. V. Nhat and M. T. Nguyen, Phys. Chem. Chem. Phys. 13, 16254 (2011).CrossRefGoogle Scholar
  35. 35.
    V. M. Medel, A. C. Reber, V. Chauhan, et al., J. Am. Chem. Soc. 136, 8229 (2014).CrossRefGoogle Scholar
  36. 36.
    M. Zhang, J. F. Zhang, X. J. Feng, and H. Y. Zhang, J. Phys. Chem. A 117, 13025 (2013).CrossRefGoogle Scholar
  37. 37.
    X. J. Deng, X. Y. Kong, H. G. Xu, et al., J. Phys. Chem. 119, 11048 (2015).CrossRefGoogle Scholar
  38. 38.
    J. H. Park, D. Y. Moon, D. S. Han, et al., Thin Solid Films 547, 141 (2013).CrossRefGoogle Scholar
  39. 39.
    M. J. Frisch et al., Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
  40. 40.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).CrossRefGoogle Scholar
  41. 41.
    W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985).CrossRefGoogle Scholar
  42. 42.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).CrossRefGoogle Scholar
  43. 43.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  44. 44.
    J. P. Perdew and Y. Wang, Phys. Rev. A 45, 244 (1992).Google Scholar
  45. 45.
    J. Y. Yuan, B. C. Yang, G. W. Li, et al., Comput. Mater. Sci. 102, 213 (2015).CrossRefGoogle Scholar
  46. 46.
    T. P. Martin, Phys. Rep. 273, 199 (1996).CrossRefGoogle Scholar
  47. 47.
    J. M. Smith, J. Am. Inst. Acronaut. Astronaut. 3, 648 (1965).CrossRefGoogle Scholar
  48. 48.
    D. M. Wood, Phys. Rev. Lett. 46, 749 (1981).CrossRefGoogle Scholar
  49. 49.
    M. Zhang, X. Y. Gu, W. L. Zhang, et al., Physica B 45, 642 (2010).CrossRefGoogle Scholar
  50. 50.
    P. Jean, S. N. Khanna, and B. K. Rao, Physics and Chemistry of Small Metal Clusters (Plenum, New York, 1987).CrossRefGoogle Scholar
  51. 51.
    T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012).CrossRefGoogle Scholar
  52. 52.
    G. W. Zhang, Y. P. Feng, and C. K. Ong, Phys. Rev. B 54, 17208 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Material ScienceShanxi Normal UniversityLinfenP.R. China

Personalised recommendations