Skip to main content
Log in

Trends in Geometric, Energetic, Electronic, and Magnetic Properties of Vanadium–Copper Clusters Cu n V with n = 1–12: Density Functional Calculations

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A systematic quantum chemical investigation on the geometric, energetic, electronic and magnetic properties of vanadium-copper nanoalloy clusters (n = 1–12) is performed by using BPW91/LanL2DZ calculations. The calculated results show that the structural evolution of Cu n V clusters favors a compact and icosahedral growth pattern and V atom favors occupying the most highly coordinated position. Energetic properties show that doping of one V atom contributes to strengthening the stability of the copper clusters with the growth of the clusters. The stacking mode of clusters apparently has a more important effect on the clusters stability than the electronic structure. However, electronic structures have some contribution to the stability of Cu n V clusters as well. The electronic properties of Cu n V are analyzed through vertical ionization potential (VIP), vertical electron affinity (VEA) and chemical hardness (η). The magnetism calculations show that when doping V atom in copper clusters, the cluster system generate a very large magnetic moment and its contribution mainly comes from the 3d orbital of doping-V atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Morse, Chem. Rev. 86, 1049 (1986).

    Article  CAS  Google Scholar 

  2. J. P. Wilcoxon and B. L. Abram, Synthesis, Chem. Soc. Rev. 35, 1162 (2006).

    Article  CAS  Google Scholar 

  3. M. Brack, Rev. Mod. Phys. 65, 677 (1993).

    Article  CAS  Google Scholar 

  4. K. R. Harikumar, S. Ghosh, and C. N. R. Rao, J. Phys. Chem. A 101, 536 (1997).

    Article  CAS  Google Scholar 

  5. J. A. Alonso and L. C. Balbás, Struct. Bond. 80, 228 (1993).

    Google Scholar 

  6. I. Katakuse and T. Ichihara, Int. J. Mass Spectrom. Ion Process. 67, 229 (1985).

    Article  CAS  Google Scholar 

  7. J. Ho and K. M. Ervin, J. Chem. Phys. 93, 6987 (1990).

    Article  CAS  Google Scholar 

  8. W. A. de Heer, W. D. Knight, M. Y. Chou, and M. L. Cohen, Solid State Phys. 40, 93 (1987).

    Article  Google Scholar 

  9. L. M. Wang, S. Bulusu, W. Huang, et al., J. Am. Chem. Soc. 129, 15136 (2007).

    Article  CAS  Google Scholar 

  10. D. Dong, X. Y. Kuang, J. J. Guo, and B. X. Zheng, Physica A 389, 5216 (2010).

    Article  CAS  Google Scholar 

  11. M. A. Tafoughalt and M. Samah, Comput. Theor. Chem. 1033, 23 (2014).

    Article  CAS  Google Scholar 

  12. J. H. Sinfelt, Chem. Res. 10, 15 (1977).

    Article  CAS  Google Scholar 

  13. B. C. Gates, Chem. Rev. 95, 511 (1995).

    Article  CAS  Google Scholar 

  14. K. Judai, S. Abbet, A. S. Worz, et al., J. Am. Chem. Soc. 126, 2732 (2004).

    Article  CAS  Google Scholar 

  15. G. Guzmán-Ramirez, F. Aguilera-Granja, and J. Rolbles, Eur. Phys. J. D 57, 49 (2010).

    Article  Google Scholar 

  16. D. E. Power, S. G. Hansen, M. E. Geusic, et al., J. Chem. Phys. 78, 2866 (1983).

    Article  Google Scholar 

  17. C. L. Pettiette, S. H. Yang, M. J. Craycraft, et al., J. Chem. Phys. 88, 5377 (1988).

    Article  CAS  Google Scholar 

  18. M. B. Knickelbein, Chem. Phys. Lett. 192, 129 (1992).

    Article  CAS  Google Scholar 

  19. P. Jaque and A. Toro-Labbé, J. Chem. Phys. 117, 3208 (2002).

    Article  CAS  Google Scholar 

  20. J. G. Han, L. S. Sheng, Y. W. Zhang, and J. A. Morales, Chem. Phys. 294, 211 (2003).

    Article  CAS  Google Scholar 

  21. Y. J. Ko, H. Wang, K. Pradhan, et al., J. Chem. Phys. 135, 44312 (2011).

    Article  Google Scholar 

  22. C. G. Li, X. W. Zhou, Y. N. Tang, et al., Struct., Comput. Theor. Chem. 1055, 51 (2015).

    Article  CAS  Google Scholar 

  23. X. Dong, L. Guo, C. Wen, et al., Russ. J. Phys. Chem. A 88, 1113 (2014).

    Article  CAS  Google Scholar 

  24. F. Yang, Q. Sun, L. L. Ma, et al., J. Phys. Chem. A 114, 8417 (2010).

    Article  CAS  Google Scholar 

  25. Y. Kadioglu, G. Gökoglu, and O. Üzengi Aktürk, Thin Solid Films 579, 153 (2015).

    Article  CAS  Google Scholar 

  26. Y. Yang and D. J. Cheng, J. Phys. Chem. C 118, 250 (2014).

    Article  CAS  Google Scholar 

  27. W. Ling, D. Dong, S. J. Wang, and Z. Q. Zhao, J. Phys. Chem. Solids 76, 10 (2015).

    Article  CAS  Google Scholar 

  28. Y. H. Zhou, Z. Zeng, and X. Ju, Microeletron. J. 40, 832 (2009).

    Article  Google Scholar 

  29. X. Liu, A. Wang, X. Wang, et al., Chem. Commun. 27, 3187 (2008).

    Article  Google Scholar 

  30. E. M. Spain and M. D. Morse, J. Chem. Phys. 96, 2511 (1992).

    Article  CAS  Google Scholar 

  31. A. Kramida, Y. Ralchenko, and J. Reader, NIST Atomic Spectra Database, Vers. 5.1 (Natl. Inst. Standards and Technol., Gaithersburg, MD, 2013). http://Physics.nist.gov/asd.

    Google Scholar 

  32. X. X. Jin, J. G. Du, G. Jiang, et al., Eur. Phys. J. D 64, 323 (2011).

    Article  CAS  Google Scholar 

  33. K. Pradhan, P. Sen, J. U. Reveles, et al., Phys. Rev. B 77, 045408 (2008).

    Article  Google Scholar 

  34. P. V. Nhat and M. T. Nguyen, Phys. Chem. Chem. Phys. 13, 16254 (2011).

    Article  CAS  Google Scholar 

  35. V. M. Medel, A. C. Reber, V. Chauhan, et al., J. Am. Chem. Soc. 136, 8229 (2014).

    Article  CAS  Google Scholar 

  36. M. Zhang, J. F. Zhang, X. J. Feng, and H. Y. Zhang, J. Phys. Chem. A 117, 13025 (2013).

    Article  CAS  Google Scholar 

  37. X. J. Deng, X. Y. Kong, H. G. Xu, et al., J. Phys. Chem. 119, 11048 (2015).

    Article  CAS  Google Scholar 

  38. J. H. Park, D. Y. Moon, D. S. Han, et al., Thin Solid Films 547, 141 (2013).

    Article  CAS  Google Scholar 

  39. M. J. Frisch et al., Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  40. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).

    Article  CAS  Google Scholar 

  41. W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985).

    Article  CAS  Google Scholar 

  42. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).

    Article  CAS  Google Scholar 

  43. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  44. J. P. Perdew and Y. Wang, Phys. Rev. A 45, 244 (1992).

    Google Scholar 

  45. J. Y. Yuan, B. C. Yang, G. W. Li, et al., Comput. Mater. Sci. 102, 213 (2015).

    Article  CAS  Google Scholar 

  46. T. P. Martin, Phys. Rep. 273, 199 (1996).

    Article  CAS  Google Scholar 

  47. J. M. Smith, J. Am. Inst. Acronaut. Astronaut. 3, 648 (1965).

    Article  CAS  Google Scholar 

  48. D. M. Wood, Phys. Rev. Lett. 46, 749 (1981).

    Article  CAS  Google Scholar 

  49. M. Zhang, X. Y. Gu, W. L. Zhang, et al., Physica B 45, 642 (2010).

    Article  Google Scholar 

  50. P. Jean, S. N. Khanna, and B. K. Rao, Physics and Chemistry of Small Metal Clusters (Plenum, New York, 1987).

    Book  Google Scholar 

  51. T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  Google Scholar 

  52. G. W. Zhang, Y. P. Feng, and C. K. Ong, Phys. Rev. B 54, 17208 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-Yun Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, YY., Zhang, CY. & Wang, BQ. Trends in Geometric, Energetic, Electronic, and Magnetic Properties of Vanadium–Copper Clusters Cu n V with n = 1–12: Density Functional Calculations. Russ. J. Phys. Chem. 91, 2558–2568 (2017). https://doi.org/10.1134/S0036024417130295

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417130295

Keywords

Navigation