Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2651–2656 | Cite as

Effects of Cobalt Doping on the Microstructure and Optical Properties of ZnAl2O4 Nanoparticles

  • Xiaojuan Wu
  • Zhiqiang Wei
  • Xiujuan Chen
  • Xuan Wang
  • Hua Yang
  • Jinlong Jiang
  • Lihua Yuan
Physical Chemistry of Nanoclusters and Nanomaterials
  • 3 Downloads

Abstract

Co-doped ZnAl2O4 nanoparticles were prepared by hydrothermal method. The samples were characterized by XRD, HRTEM, EDX, FT-IR, XPS, PL, and UV–Vis, and the effects of cobalt doping on the microstructure and optical property of the samples were studied. The experimental results showed that Co-doped ZnAl2O4 nanoparticles synthesized by this method are single phase with cubic crystal structure, no other impurity phases were observed. Furthermore, with increasing the Co2+ concentration, the average crystallite size of the Co-doped samples became smaller. The absorption bands in FT-IR spectra are broadened in the low frequency region, the PL spectra had the red-shift and the UV–Vis peaks intensity gradually enhanced.

Keywords

ZnAl2O4 Co-doped hydrothermal method microstructure optical property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Chabo, E. Pellicer, E. Rossinyol, O. Castell, S. Surinach, and M. D. Baro, Cryst. Growth Des. 9, 4814 (2009).CrossRefGoogle Scholar
  2. 2.
    Q. Song and Z. John Zhang, J. Am. Chem. Soc. 126, 6164 (2004).CrossRefGoogle Scholar
  3. 3.
    F. Tielens, M. Calatayud, R. Franco, J. M. Recio, J. Pérez-Ramirez, and C. Minot, J. Phys. Chem. B 110, 988 (2006).CrossRefGoogle Scholar
  4. 4.
    K. Izumi, S. Miyazaki, S. Yoshida, T. Mizokawa, and E. Hanamura, Phys. Rev. B 76, 075111 (2007).CrossRefGoogle Scholar
  5. 5.
    A. Goldstein, Y. Yeshurun, M. Vulfson, and H. Kravits, J. Am. Ceram. Soc. 95, 879 (2012).Google Scholar
  6. 6.
    F. Y. Zhang, Z. Zeng, and J. Q. You, J. Nanosci. Nanotechnol. 10, 5475 (2010).CrossRefGoogle Scholar
  7. 7.
    R. T. Kumara, N. C. S. Selvama, C. Ragupathia, L. J. Kennedyb, and J. J. Vijaya, Powder Technol. 224, 147 (2012).CrossRefGoogle Scholar
  8. 8.
    L. Cornu, M. Gaudon, and V. Jubera, J. Mater. Chem. C 1, 5419 (2013).CrossRefGoogle Scholar
  9. 9.
    W. Lei, W. Z. Lu, D. Liu, and J. H. Zhu, J. Am. Ceram. Soc. 92, 105 (2009)CrossRefGoogle Scholar
  10. 10.
    X. L. Duan, D. R. Yuan, Z. H. Sun, C. N. Luan, D. Y. Pan, D. Xu, and M. K. Lv, J. Alloys Compd. 386, 311 (2005).CrossRefGoogle Scholar
  11. 11.
    D. Zhang, C. Z. Wang, Y. L. Liu, Q. Shi, W. J. Wang, and Y. Zhai, J. Lumin. 132, 1529 (2012).CrossRefGoogle Scholar
  12. 12.
    G. T. Anand, L. J. Kennedy, and J. J. Vijaya, J. Alloys Compd. 581, 558 (2013).CrossRefGoogle Scholar
  13. 13.
    D. Zhang, Y. L. Yin, Y. L. Liu, W. B. Chao, and Y. Zhai, J. Phys. Chem. Solids 74, 1131 (2013).CrossRefGoogle Scholar
  14. 14.
    X. J. Wang, M. Zhang, H. Ding, and Z. Sun, J. Alloys Compd. 509, 6317 (2011).CrossRefGoogle Scholar
  15. 15.
    Z. R. Zhu, X. Y. Lia, Q. D. Zhao, S. M. Liu, X. J. Hu, and G. H. Chen, Mater. Lett. 65, 194 (2011).CrossRefGoogle Scholar
  16. 16.
    R. Ianos, Radu Lazau, Ioan Lazau, and C. Pacurariu, J. Eur. Ceram. Soc. 32, 1605 (2012).CrossRefGoogle Scholar
  17. 17.
    S. D. Kapse, F. C. Raghuwanshi, V. D. Kapse, and D. R. Patil, Curr. Appl. Phys. 12, 307 (2012).CrossRefGoogle Scholar
  18. 18.
    L. Zhang, J. H. Yan, M. J. Zhou, Y. H. Yang, and Y. N. Liu, Appl. Surf. Sci. 268, 237 (2013).CrossRefGoogle Scholar
  19. 19.
    S. Iaiche and A. Djelloul, J. Spectrosc. 2015, 1 (2015).CrossRefGoogle Scholar
  20. 20.
    W. P. Wang, H. Yang, T. Xian, and J. L. Jiang, Mater. Trans. 53, 1586 (2012).CrossRefGoogle Scholar
  21. 21.
    V. Kumar, H. C. Swart, O. M. Ntwaeaborwa, R. E. Kroon, J. J. Terblans, S. K. K. Shaat, A. Yousif, and M. M. Duvenhage, Mater. Lett. 101, 57 (2013).CrossRefGoogle Scholar
  22. 22.
    X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, and C. Yang, Physica B 388, 145 (2007).CrossRefGoogle Scholar
  23. 23.
    H. X. Chen, J. J. Ding, X. G. Zhao, and S. Y. Ma, Physica B 405, 1339 (2010).CrossRefGoogle Scholar
  24. 24.
    D. H. Zhang, Z. Y. Xue, and Q. P. Wang, J. Phys. D: Appl. Phys. 35, 2837 (2002).CrossRefGoogle Scholar
  25. 25.
    D. Visinescu, C. Paraschiv, A. Ianculescu, B. Jurca, B. Vasile, and O. Carp, Dyes Pigm. 87, 125 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Xiaojuan Wu
    • 1
    • 2
  • Zhiqiang Wei
    • 1
    • 2
  • Xiujuan Chen
    • 1
  • Xuan Wang
    • 2
  • Hua Yang
    • 1
    • 2
  • Jinlong Jiang
    • 1
  • Lihua Yuan
    • 1
  1. 1.State Key Laboratory of Advanced Processing and Recycling Nonferrous MetalsLanzhou University of TechnologyLanzhouP.R. China
  2. 2.School of ScienceLanzhou University of TechnologyLanzhouP.R. China

Personalised recommendations