Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2629–2635 | Cite as

Synthesis, Adsorptive, and Photocatalytic Properties of Carbon Nanotubes/TiO2 Nanocomposite Photocatalysts

  • Xiankun Shao
  • Shibin Nie
  • Liangzhi Shao
  • Baoshan Zhang
  • Benxia Li
Physical Chemistry of Nanoclusters and Nanomaterials

Abstract

The carbon nanotubes/TiO2 (CNTs/TiO2) composite photocatalysts composed of TiO2 nanoparticles and multiwalled carbon nanotubes (CNTs) were prepared by a facile hydrothermal method. The photocatalysts were characterized by a range of analytical techniques including X-ray powder diffraction, field emission scanning electron microscope, thermal gravimetric analysis and UV–Vis optical absorption spectra, etc. The amount of TiO2 nanoparticles growing on CNTs could be tuned by adjusting the dosage of precursor in the reaction solution. Both the adsorptivity and photocatalytic activities of pure CNTs, pure TiO2, and the CNTs/TiO2 nanocomposites were tested by the removal of methylene blue from water in dark and under a simulated sunlight, respectively. By comparison, the improved photocatalytic activity of the CNTs/TiO2 nanocomposite is mainly due to that the CNTs can disperse the active component of TiO2 nanoparticles, provide a larger the specific surface area, as well as act as an electron sink to accelerate the separation of the photogenerated charges.

Keywords

synthesis nanocomposite characterization photocatalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. C. D. Nath, S. Sarker, A. J. S. Ahammad, and J.-J. Lee, Phys. Chem. Chem. Phys. 14, 4333 (2012).CrossRefGoogle Scholar
  2. 2.
    A. Moya, A. Cherevan, S. Marchesan, P. Gebhardt, M. Prato, D. Eder, and J. J. Vilatela, Appl. Catal. B: Environ. 179, 574 (2015).CrossRefGoogle Scholar
  3. 3.
    C. Wang, M. H. Cao, P. F. Wang, Y. H. Ao, J. Hou, and J. Qian, Appl. Catal. A: Gen. 473, 83 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. J. Hwang, S. Yang, E. H. Jeon, H. W. Nho, K. J. Kim, T. H. Yoon, and H. Lee, Appl. Catal. B: Environ. 180, 480 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Bagheri, Z. A. M. Hir, A. T. Yousefi, and S. B. A. Hamid, Microporous Mesoporous Mater. 218, 206 (2015).CrossRefGoogle Scholar
  6. 6.
    Y. Yu, J. Chen, Z. M. Zhou, and Y. D. Zhao, Dalton Trans. 42, 15280 (2013).CrossRefGoogle Scholar
  7. 7.
    B. Gao, G. Z. Chen, and G. L. Puma, Appl. Catal. B: Environ. 89, 503 (2009)CrossRefGoogle Scholar
  8. 8.
    L. W. Zhu, L. K. Zhou, H. X. Li, H. F. Wang, and J. P. Lang, Mater. Lett. 95, 13 (2013).CrossRefGoogle Scholar
  9. 9.
    B. X. Li, Y. G. Hao, X. K. Shao, H. H. Tang, T. Wang, J. B. Zhu, and S. L. Yan, J. Catal. 329, 368 (2015).CrossRefGoogle Scholar
  10. 10.
    Y. G. Hao, X. K. Shao, B. X. Li, L. Y. Hu, and T. Wang, Mater. Sci. Semicond. Process. 40, 621 (2015).CrossRefGoogle Scholar
  11. 11.
    F. L. Wang, J. H. Ho, Y. J. Jiang, and R. Amal, ACS Appl. Mater. Interfaces 7, 23941 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Q. Yang, N. Zhang, and Y. J. Xu, ACS Appl. Mater. Interfaces 5, 1156 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. Yang, L. J. Luo, M. Xiao, H. Li, X. J. Pan, and F. Z. Jiang, Mater. Sci. Semicond. Process. 40, 183 (2015).CrossRefGoogle Scholar
  14. 14.
    X. X. Wang, M. C. Liu, Q. Y. Chen, K. Zhang, J. Chen, M. Wang, P. H. Guo, and L. J. Guo, Int. J. Hydrogen Energy 38, 13091 (2013).CrossRefGoogle Scholar
  15. 15.
    Y. M. Dong, D. Y. Tang, and C. S. Li, Appl. Surf. Sci. 296, 1 (2014).CrossRefGoogle Scholar
  16. 16.
    K. Hemalatha, A. S. Prakash, and G. K. M. Jayakumar, J. Mater. Chem. A 2, 1757 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Zhang, N. Q. Zhao, W. Li, C. N. He, J. J. Li, C. S. Shi, and E. Z. Liu, Mater. Lett. 109, 240 (2013).CrossRefGoogle Scholar
  18. 18.
    D. Zhang, B. Xu, and L. C. Jiang, J. Mater. Chem. 20, 6383 (2010).CrossRefGoogle Scholar
  19. 19.
    Y. P. Wu, Z. H. Zhou, Y. F. Tuo, K. Wang, M. Huang, Y. Huang, and S. Shen, Mater. Chem. Phys. 149, 522 (2015).CrossRefGoogle Scholar
  20. 20.
    Z. S. Lu, X. T. Xiang, L. Zou, and J. L. Xie, RSC Adv. 5, 42580 (2015).CrossRefGoogle Scholar
  21. 21.
    T. C. An, J. Y. Chen, X. Nie, G. Y. Li, H. Zhang, X. L. Liu, and H. J. Zhao, ACS Appl. Mater. Interfaces 4, 5988 (2012).CrossRefGoogle Scholar
  22. 22.
    J. G. Yu, T. T. Ma, and S. W. Liu, Phys. Chem. Chem. Phys. 13, 3491 (2011).CrossRefGoogle Scholar
  23. 23.
    G. D. Tarigh, F. Shemirani, and N. S. Maz’hari, RSC Adv. 5, 35070 (2015).CrossRefGoogle Scholar
  24. 24.
    C. Guerra-Nunez, Y. C. Zhang, M. Li, V. Chawla, R. Erni, J. Michler, H. G. Park, and I. Utke, Nanoscale 7, 10622 (2015).CrossRefGoogle Scholar
  25. 25.
    S. Dhall, N. Jaggi, and R. Nathawat, Sens. Actuators A: Phys. 201, 321 (2013).CrossRefGoogle Scholar
  26. 26.
    B. X. Li, S. B. Nie, Y. G. Hao, T. X. Liu, J. B. Zhu, and S. L. Yan, Energy Convers. Manage. 98, 314 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Xiankun Shao
    • 1
  • Shibin Nie
    • 2
  • Liangzhi Shao
    • 1
  • Baoshan Zhang
    • 1
  • Benxia Li
    • 1
  1. 1.School of Materials Science and EngineeringAnhui University of Science and TechnologyHuainan, AnhuiP.R. China
  2. 2.School of Energy Resources and SafetyAnhui University of Science and TechnologyHuainan, AnhuiP.R. China

Personalised recommendations