Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2489–2494 | Cite as

The Role of Lewis and Brønsted Acid Sites in NO Reduction with NH3 on Sulfur Modified TiO2-Supported V2O5 Catalyst

  • Wei Zhao
  • Shengping Dou
  • Qin Zhong
  • Licheng Wu
  • Qian Wang
  • Aijian Wang
Chemical Kinetics and Catalysis

Abstract

V2O5/S-doped TiO2 was prepared by the sol-gel and impregnation methods. The adsorption of NO, NH3, and O2 over the catalyst was studied by in situ DRIFTS spectroscopy to elucidate the reaction mechanism of the low-temperature selective catalytic reduction of NO with NH3. Exposing the catalyst to O2 and NO, three types of nitrates species appeared on the surface. The introduction of S to TiO2 could generate large amounts of acid sites for ammonia adsorption on the catalyst, which was believed to be an important role in the SCR reaction and hereby improved the catalytic activity. The results indicated two possible SCR reaction pathways for catalyst. One was that NO was absorbed to form nitrite species, which could react with NH3 on Lewis acid sites, producing N2 and H2O. Another way was that NH3 was adsorbed, then reacted with gas phase NO (E–R) and nitrite intermediates on the surface (L–H).

Keywords

S-doping NH3–SCR reaction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Parvulescu, P. Grange, and B. Delmon, Catal. Today 46, 233 (1998).CrossRefGoogle Scholar
  2. 2.
    W. Xu, J. Zhao, H. Wang, T. Zhu, P. Li, and P. Jing, Acta Phys.-Chim. Sin. 29, 385 (2013).Google Scholar
  3. 3.
    G. Y. Zhou, B. C. Zhong, W. H. Wang, X. J. Guan, B. C. Huang, D. Q. Ye, and H. J. Wu, Catal. Today 175, 157 (2011).CrossRefGoogle Scholar
  4. 4.
    V. D. O. Rodrigues, C. Arnaldo, and J. Faro, Appl. Catal. A: Gen. 435–436, 68 (2012).CrossRefGoogle Scholar
  5. 5.
    R. B. Jin, Y. Liu, Z. B. Wu, H. Q. Wang, and T. T. Gu, Chemosphere 78, 1160 (2010).CrossRefGoogle Scholar
  6. 6.
    W. Zhao, Q. Zhong, Y. X. Pan, and R. Zhang, Chem. Eng. J. 228, 815 (2013).CrossRefGoogle Scholar
  7. 7.
    N. Apostolescu, T. Schroder, and S. Kureti, Appl. Catal B: Environ. 51, 43 (2004).CrossRefGoogle Scholar
  8. 8.
    Z. B. Wu, B. X. Jiang, Y. Liu, H. Q. Wang, and R. B. Jin, Environ. Sci. Technol. 41, 5812 (2007).CrossRefGoogle Scholar
  9. 9.
    G. Y. Zhou, B. C. Zhong, W. H. Wang, X. J. Guan, B. C. Huang, D. Q. Ye, and H. J. Wu, Catal. Today 175, 157 (2011).CrossRefGoogle Scholar
  10. 10.
    R. J. Willey, C. T. Wang, and J. B. Peri, J. Non-Cryst. Solids 186, 408 (1995).CrossRefGoogle Scholar
  11. 11.
    L. Zhang and H. He, J. Catal. 268, 18 (2009).CrossRefGoogle Scholar
  12. 12.
    M. Kantcheva, J. Catal. 204, 479 (2001).CrossRefGoogle Scholar
  13. 13.
    G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, and R. J. Willey, J. Catal. 157, 523 (1995).CrossRefGoogle Scholar
  14. 14.
    X. D. Wu, F. Lin, H. B. Xu, and D. Weng, Appl. Catal. B: Environ. 96, 101 (2010).CrossRefGoogle Scholar
  15. 15.
    L. Chen, J. H. Li, and M. F. Ge, J. Phys. Chem. C 113, 21177 (2009).CrossRefGoogle Scholar
  16. 16.
    D. Nicosia, I. Czekaj, and O. Krocher, Appl. Catal. B: Environ. 77, 228 (2008).CrossRefGoogle Scholar
  17. 17.
    G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, and R. J. Willey, J. Catal. 157, 523 (1995).CrossRefGoogle Scholar
  18. 18.
    M. A. Centeno, I. Carrizosa, and J. A. Odriozola, Appl. Catal. B: Environ. 29, 307 (2001).CrossRefGoogle Scholar
  19. 19.
    J. M. G. Amores, V. S. Escribano, G. Ramis, and G. Busca, Appl. Catal. B: Environ. 13, 45 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Wei Zhao
    • 1
  • Shengping Dou
    • 1
  • Qin Zhong
    • 2
  • Licheng Wu
    • 1
  • Qian Wang
    • 1
  • Aijian Wang
    • 1
  1. 1.School of Energy and Power EngineeringJiangsu UniversityZhenjiangP.R. China
  2. 2.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingP.R. China

Personalised recommendations