Skip to main content
Log in

The Role of Lewis and Brønsted Acid Sites in NO Reduction with NH3 on Sulfur Modified TiO2-Supported V2O5 Catalyst

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

V2O5/S-doped TiO2 was prepared by the sol-gel and impregnation methods. The adsorption of NO, NH3, and O2 over the catalyst was studied by in situ DRIFTS spectroscopy to elucidate the reaction mechanism of the low-temperature selective catalytic reduction of NO with NH3. Exposing the catalyst to O2 and NO, three types of nitrates species appeared on the surface. The introduction of S to TiO2 could generate large amounts of acid sites for ammonia adsorption on the catalyst, which was believed to be an important role in the SCR reaction and hereby improved the catalytic activity. The results indicated two possible SCR reaction pathways for catalyst. One was that NO was absorbed to form nitrite species, which could react with NH3 on Lewis acid sites, producing N2 and H2O. Another way was that NH3 was adsorbed, then reacted with gas phase NO (E–R) and nitrite intermediates on the surface (L–H).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Parvulescu, P. Grange, and B. Delmon, Catal. Today 46, 233 (1998).

    Article  CAS  Google Scholar 

  2. W. Xu, J. Zhao, H. Wang, T. Zhu, P. Li, and P. Jing, Acta Phys.-Chim. Sin. 29, 385 (2013).

    CAS  Google Scholar 

  3. G. Y. Zhou, B. C. Zhong, W. H. Wang, X. J. Guan, B. C. Huang, D. Q. Ye, and H. J. Wu, Catal. Today 175, 157 (2011).

    Article  CAS  Google Scholar 

  4. V. D. O. Rodrigues, C. Arnaldo, and J. Faro, Appl. Catal. A: Gen. 435–436, 68 (2012).

    Article  Google Scholar 

  5. R. B. Jin, Y. Liu, Z. B. Wu, H. Q. Wang, and T. T. Gu, Chemosphere 78, 1160 (2010).

    Article  CAS  Google Scholar 

  6. W. Zhao, Q. Zhong, Y. X. Pan, and R. Zhang, Chem. Eng. J. 228, 815 (2013).

    Article  CAS  Google Scholar 

  7. N. Apostolescu, T. Schroder, and S. Kureti, Appl. Catal B: Environ. 51, 43 (2004).

    Article  CAS  Google Scholar 

  8. Z. B. Wu, B. X. Jiang, Y. Liu, H. Q. Wang, and R. B. Jin, Environ. Sci. Technol. 41, 5812 (2007).

    Article  CAS  Google Scholar 

  9. G. Y. Zhou, B. C. Zhong, W. H. Wang, X. J. Guan, B. C. Huang, D. Q. Ye, and H. J. Wu, Catal. Today 175, 157 (2011).

    Article  CAS  Google Scholar 

  10. R. J. Willey, C. T. Wang, and J. B. Peri, J. Non-Cryst. Solids 186, 408 (1995).

    Article  CAS  Google Scholar 

  11. L. Zhang and H. He, J. Catal. 268, 18 (2009).

    Article  CAS  Google Scholar 

  12. M. Kantcheva, J. Catal. 204, 479 (2001).

    Article  CAS  Google Scholar 

  13. G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, and R. J. Willey, J. Catal. 157, 523 (1995).

    Article  CAS  Google Scholar 

  14. X. D. Wu, F. Lin, H. B. Xu, and D. Weng, Appl. Catal. B: Environ. 96, 101 (2010).

    Article  CAS  Google Scholar 

  15. L. Chen, J. H. Li, and M. F. Ge, J. Phys. Chem. C 113, 21177 (2009).

    Article  CAS  Google Scholar 

  16. D. Nicosia, I. Czekaj, and O. Krocher, Appl. Catal. B: Environ. 77, 228 (2008).

    Article  CAS  Google Scholar 

  17. G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, and R. J. Willey, J. Catal. 157, 523 (1995).

    Article  CAS  Google Scholar 

  18. M. A. Centeno, I. Carrizosa, and J. A. Odriozola, Appl. Catal. B: Environ. 29, 307 (2001).

    Article  CAS  Google Scholar 

  19. J. M. G. Amores, V. S. Escribano, G. Ramis, and G. Busca, Appl. Catal. B: Environ. 13, 45 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Dou, S., Zhong, Q. et al. The Role of Lewis and Brønsted Acid Sites in NO Reduction with NH3 on Sulfur Modified TiO2-Supported V2O5 Catalyst. Russ. J. Phys. Chem. 91, 2489–2494 (2017). https://doi.org/10.1134/S003602441713026X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441713026X

Keywords

Navigation