Advertisement

Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2613–2620 | Cite as

Dynamic Determination of Some Optical and Electrical Properties of Galena Natural Mineral: Potassium Ethyl Xanthate Solution Interface

  • D. Todoran
  • R. Todoran
  • E. M. Anitas
  • Zs. Szakacs
Structure of Matter and Quantum Chemistry
  • 15 Downloads

Abstract

This paper presents results concerning optical and electrical properties of galena natural mineral and of the interface layer formed between it and the potassium ethyl xanthate solution. The applied experimental method was differential optical reflectance spectroscopy over the UV–Vis/NIR spectral domain. Computations were made using the Kramers–Kronig formalism. Spectral dependencies of the electron loss functions, determined from the reflectance data obtained from the polished mineral surface, display van Hove singularities, leading to the determination of its valence band gap and electron plasma energy. Time dependent measurement of the spectral dispersion of the relative reflectance of the film formed at the interface, using the same computational formalism, leads to the dynamical determination of the spectral variation of its optical and electrical properties. We computed behaviors of the dielectric constant (dielectric permittivity), the dielectric loss function, refractive index and extinction coefficient, effective valence number and of the electron loss functions. The measurements tend to stabilize when the dynamic adsorption-desorption equilibrium is reached at the interface level.

Keywords

galena natural mineral–potassium ethyl xanthate interface adsorption differential optical reflectance spectroscopy Kramers–Kronig formalism electrical and optical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Ahrenkiel, J. Opt. Soc. Am. 61, 1651 (1971).CrossRefGoogle Scholar
  2. 2.
    K. E. Peiponen and J. J. Saarinen, Rep. Prog. Phys. 72, 056401 (2009).CrossRefGoogle Scholar
  3. 3.
    H. A. Kramers, Nature 117, 775 (1926).Google Scholar
  4. 4.
    R. de Kronig, J. Opt. Soc. Am. 12, 547 (1926).CrossRefGoogle Scholar
  5. 5.
    C. Chen, J. Wu, and Y. Li, Russ. J. Phys. Chem. A 88, 1215 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Dressel and G. Gruner, Electrodynamics of Solids (Cambridge Univ. Press, Cambridge, 2002).CrossRefGoogle Scholar
  7. 7.
    F. Wooten, Optical Properties of Solids (Academic, New York, 1972).Google Scholar
  8. 8.
    J. D. E. Mcintyre and D. E. Aspnes, Surf. Sci. 24, 417 (1971).CrossRefGoogle Scholar
  9. 9.
    R. Todoran, D. Todoran, and Zs. Szakacs, Russ. J. Phys. Chem. A 89, 2422 (2015).CrossRefGoogle Scholar
  10. 10.
    E. A. Sosnov, A. A. Malkov, and A. A. Malygin, Russ. J. Phys. Chem. A 83, 642 (2009).CrossRefGoogle Scholar
  11. 11.
    F. R. Brebrick and W. W. Scanlon, J. Chem. Phys. 27, 607 (1957).CrossRefGoogle Scholar
  12. 12.
    J. Leja, Surface Chemistry of Froth Flotation (Plenum, New York, 1982).Google Scholar
  13. 13.
    R. Todoran, D. Todoran, and Zs. Szakacs, Phys. Scripta T 157, 014032 (2013).CrossRefGoogle Scholar
  14. 14.
    R. Todoran, D. Todoran, and Zs. Szakacs, Spectrochim. Acta A 152, 591 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Huber-Panu, über den Einfluss der Temperatur auf die Flotation (E. Mauckisch, Freiberg, 1930).Google Scholar
  16. 16.
    A. S. Davydov, Theorie du solide (Nauka, Moscow, 1976) [in French].Google Scholar
  17. 17.
    B. Jensen and A. Torabi, IEEE J. Quantum. Electron. 19, 448 (1983).CrossRefGoogle Scholar
  18. 18.
    A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).CrossRefGoogle Scholar
  19. 19.
    J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).Google Scholar
  20. 20.
    E. I. Kapinus, Russ. J. Phys. Chem. A 85, 668 (2011)CrossRefGoogle Scholar
  21. 21.
    J. N. Zemel, J. D. Jansen, and R. B. Scholar, Phys. Rev. A 140, 330 (1965)CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. Todoran
    • 1
  • R. Todoran
    • 1
  • E. M. Anitas
    • 2
    • 3
  • Zs. Szakacs
    • 1
  1. 1.Technical University of Cluj Napoca, North University Centre of Baia MareBaia Mare, MaramuresRomania
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  3. 3.Horia Hulubei National Institute of Physics and Nuclear EngineeringBucharest-MagureleRomania

Personalised recommendations