Advertisement

Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2503–2507 | Cite as

Phase and Physicochemical Properties Diagrams of Quaternary System Li2B4O7 + Na2B4O7 + Mg2B6O11 + H2O

  • Shi-qiang Wang
  • Xue-min Du
  • Yan Jing
  • Ya-fei Guo
  • Tian-long Deng
Physical Chemistry of Solutions
  • 12 Downloads

Abstract

The phase and physicochemical properties diagrams of the quaternary system (Li2B4O7 + Na2B4O7 + Mg2B6O11) at 288.15 K and 0.1 MPa were constructed using the solubilities, densities, and refractive indices measured. In the phase diagrams of the system there are one invariant point, three univariant isothermic dissolution curves, and three crystallization regions corresponding to Li2B4O7 · 3H2O, Na2B4O7 · 10H2O, and Mg2B6O11 · 15H2O, respectively. The solution density, refractive index of the quaternary system changes regularly with the increasing of Li2B4O7 concentration. The calculated values of density and refractive index using empirical equations of the quaternary system are in good agreement with the experimental values.

Keywords

stable phase equilibrium phase diagram lithium borate borax inderite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Song and Y. Yao, Calphad 25, 329 (2001).CrossRefGoogle Scholar
  2. 2.
    S. Y. Gao, P. S. Song, S. P. Xia, and M. P. Zheng, Tibet Saline Lake Chemistry: A New Type of Boron Lithium Salt Lake (Chin. Sci., Beijing, 2007).Google Scholar
  3. 3.
    X. Y. Zheng, M. G. Zhang, Y. Xu, et al., Salt Lakes in China (Chin. Sci., Beijing, 2002).Google Scholar
  4. 4.
    S. Q. Wang and T. L. Deng, J. Chem. Thermodyn. 40, 1007 (2008).CrossRefGoogle Scholar
  5. 5.
    D. L. Gao, Q. Wang, Y. F. Guo, et al., Fluid Phase Equilib. 371, 121 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Q. Wang, Y. F. Guo, J. S. Yang, et al., Russ. J. Phys. Chem. A 89, 2190 (2015).CrossRefGoogle Scholar
  7. 7.
    S. Q. Wang, Y. F. Guo, W. J. Liu, et al., J. Solution Chem. 44, 1545 (2015).CrossRefGoogle Scholar
  8. 8.
    T. L. Deng, S. Q. Wang, and B. Sun, J. Chem. Eng. Data 53, 411 (2008).CrossRefGoogle Scholar
  9. 9.
    D. C. Li, J. S. Yuan, and S. Q. Wang, Russ. J. Phys. Chem. A 88, 42 (2014).CrossRefGoogle Scholar
  10. 10.
    D. L. Gao, Y. F. Guo, X. P. Yu, et al., J. Chem. Eng. Data 60, 2594 (2015).CrossRefGoogle Scholar
  11. 11.
    F. Li, S. S. Zhang, Y. F. Guo, et al., Chin. Sci. Paper 9, 1080 (2014).Google Scholar
  12. 12.
    S. Q. Wang, X. N. Han, Y. Jing, et al., J. Chem. Eng. Data 61, 1155 (2016).CrossRefGoogle Scholar
  13. 13.
    Y. F. Guo, Y. H. Liu, Q. Wang, et al., J. Chem. Eng. Data 58, 2763 (2013).CrossRefGoogle Scholar
  14. 14.
    S. Q. Wang, F. Y. Guo, D. C. Li, et al., Thermochim. Acta 601, 75 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Gao, Y. F. Guo, S. Q. Wang, et al., J. Chem. 2013, 1 (2013).CrossRefGoogle Scholar
  16. 16.
    C. H. Fang, J. Salt Lake Res. 2, 15 (1990).Google Scholar
  17. 17.
    J. M. Speight, Lange’s Handbook of Chemistry, 16th ed. (McGraw-Hill, New York, 2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Shi-qiang Wang
    • 1
  • Xue-min Du
    • 1
  • Yan Jing
    • 1
  • Ya-fei Guo
    • 1
  • Tian-long Deng
    • 1
  1. 1.Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials ScienceTianjin University of Science and TechnologyTianjinP.R. China

Personalised recommendations