Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2569–2577 | Cite as

Study of Kryptofix5 Complexation with La3+ Cation in Several Individual and Binary Nonaqueous Solvents Using Conductometric Method

  • Setareh Akbari
  • Razieh Sanavi Khoshnood
  • Elaheh Hatami
Structure of Matter and Quantum Chemistry


Complexatio of the La3+ cation with 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane(Kryptofix5) was studied in pure solvents acetonitrile (AN), methanol (MeOH), nitrobenzene (NB), tetrahydrofuran (THF), methyl acetate (MeOAC) and in various binary solvent mixtures of AN–MeOH, AN–NB, AN–THF, and AN–MeOAC systems at different temperatures using the conductometric method. The stoichiometry of the complex was found to be 1 : 1 (ML). In all cases, the variation of the log kf with composition of the solvent was non-linear. This behavior is probably due to a change in the structure of these binary mixed solvents as the composition of the medium is varied. The stability order of the complex in pure nonaqueous solvents at 25°C increases in the order: AN > THF > MeOAC > MeOH > NB. The values of thermodynamic data (ΔH c °,ΔS c °) formation of (Kryptofix5.La)3+ complex are definitely solvent dependent.


(Kryptofix5.La)3+ complexes acetonitrile–methanol acetonitrile–nitrobenzene acetonitrile–tetrahydrofuran acetonitrile–methyl acetate conductometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Vogler, Inorg. Chem. Commun. 51, 78 (2015).CrossRefGoogle Scholar
  2. 2.
    E. Hatami, H. A. Zamani, and R. Sanavi-Khoshnod, Int. J. Electrochem. Sci. 9, 8263 (2014).Google Scholar
  3. 3.
    A. Ghaemi, H. Tavakkoli, and T. Mombeni, Mater. Sci. Eng. C 38, 186 (2014).CrossRefGoogle Scholar
  4. 4.
    G. H. Rounaghi, A. Ghaemi, and M. Chamsaz, Arab. J. Chem. (2011, in press).Google Scholar
  5. 5.
    G. H. Rounaghi, A. Shafaie Bejestani, and M. Chamsaz, J. Incl. Phenom. Macrocycl. Chem. 77, 395 (2013).CrossRefGoogle Scholar
  6. 6.
    M. Zarifpour, G. H. Rounaghi, and S. Tarahomi, Russ. J. Phys. Chem. A 11, 1996 (2014).CrossRefGoogle Scholar
  7. 7.
    G. H. Rounaghi, S. Dolatshahi, and S. Tarahomi, Russ. J. Phys. Chem. A 13, 2289 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Rezayi, Y. Alias, M. M. Abdi, et al., Molecules 18, 12041 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Ahmadzadeh, A. Kassim, M. Rezayi, et al., Molecules 16, 8130 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Rezayi, S. Ahmadzadeh, A. Kassim, et al., Int. J. Electrochem. Sci. 6, 6350 (2011).Google Scholar
  11. 11.
    K. Suhud, L. Y. Heng, M. Rezayi, et al., J. Solution Chem. 44, 181 (2015).CrossRefGoogle Scholar
  12. 12.
    G. Tian, L. R. Martin, and L. Rao, Inorg. Chem. 49, 10598 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Rezayi, Y. Lee, A. Kassim, et al., Chem. Cent. J. 6, 40 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Rezayi, L. Y. Heng, A. Kassim, et al., Sensors 12, 8806 (2012).CrossRefGoogle Scholar
  15. 15.
    A. Kassim, M. Rezayi, S. Ahmadzadeh, et al., IOP Conf. Ser.: Mater. Sci. Eng. 17, 012010 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Kassim, M. Rezayi, S. AhmadZadeh, et al., Malays. J. Chem. 11, 19 (2009).Google Scholar
  17. 17.
    A. A. Abraham, M. Rezayi, N. S. Manan, et al., Electrochim. Acta 165, 221 (2015).CrossRefGoogle Scholar
  18. 18.
    L. Ribeiro, R. A. Carvalho, D. C. Ferreira, et al., Eur. J. Pharm. Sci. 24, 1 (2005).CrossRefGoogle Scholar
  19. 19.
    S. Mostafa, M. El-Sadek, and E. A. Alla, J. Pharm. Biomed. Anal. 27, 133 (2002).CrossRefGoogle Scholar
  20. 20.
    S. B. T. Sany, A. Salleh, A. H. Sulaiman, et al., Malays. Environ. Prot. Eng. 38, 139 (2012).Google Scholar
  21. 21.
    S. B. T. Sany, R. Hashim, A. Salleh, et al., Environ. Earth Sci. 71, 4319 (2014).CrossRefGoogle Scholar
  22. 22.
    W. Zielenkiewicz, A. Marcinowicz, J. Poznañski, et al., J. Mol. Liq. 121, 8 (2005).CrossRefGoogle Scholar
  23. 23.
    G. Rounaghi, M. Mohajeri, S. Ahmadzadeh, et al., J. Incl. Phenom. Macrocycl. Chem. 63, 365 (2009).CrossRefGoogle Scholar
  24. 24.
    V. K. Gupta, R. Jain, S. Agarwal, et al., Anal. Biochem. 410, 266 (2011).CrossRefGoogle Scholar
  25. 25.
    G. Rounaghi, M. A. Zavvar, K. Badiee, et al., J. Incl. Phenom. Macrocycl. Chem. 59, 363 (2007).CrossRefGoogle Scholar
  26. 26.
    H. S. Choi, T. Ooya, S. Sasaki, et al., Macromolecules 36, 5342 (2003).CrossRefGoogle Scholar
  27. 27.
    A. F. Danil de Namor, and M. Shehab, J. Phys. Chem. B 107, 6462 (2003).CrossRefGoogle Scholar
  28. 28.
    Y. Abdollahi, A. Zakaria, M. Abbasiyannejad, et al., J. Chem. Cent. 7, 96 (2013).CrossRefGoogle Scholar
  29. 29.
    P. E. Keller, R. T. Kouzes, and L. J. Kangas, in Proceedings of the Electro/94 International Conference (IEEE, 1994), p.377.Google Scholar
  30. 30.
    S. B. T. Sany, R. Hashim, M. Rezayi, et al., Environ. Sci. Pollut. Res. 21, 813 (2014).CrossRefGoogle Scholar
  31. 31.
    F. Lorestani, Z. Shahnavaz, P. Mn, et al., Sens. Actuators B: Chem. 208, 389 (2015).CrossRefGoogle Scholar
  32. 32.
    Y. Abdollahi, A. Zakaria, N. A. Sairi, et al., Sci. World J. (2014).Google Scholar
  33. 33.
    S. Ahmadzadeh, M. Rezayi, and H. Karimi-Maleh, J. Meas. 70, 214 (2015).CrossRefGoogle Scholar
  34. 34.
    Genplot, A Data Analysis and Graphical Plotting Program for Scientist and Engineers (Computer Graphic Serviece, Ithaca, New York, 1997).Google Scholar
  35. 35.
    A. Chouai, S. Laugier, and D. Richon, Fluid Phase Equilib. 199, 53 (2002).CrossRefGoogle Scholar
  36. 36.
    V. Gutmann, The Donor–Acceptor Approach to Molecular Interactions (Plenum, New York, 1978).CrossRefGoogle Scholar
  37. 37.
    S. Katsuta, Y. Ito, and Y. Takeda, Inorg. Chim. Acta 357, 541 (2004).CrossRefGoogle Scholar
  38. 38.
    F. A. Christy and P. S. Shirvastav, Crit. Rev. Anal. Chem. 41, 236 (2011).CrossRefGoogle Scholar
  39. 39.
    M. Frisch, G. Trucks, H. Schlegel, et al., Gaussian 03, Revision B3 (Gaussian Inc., Wallingford, CT, 2003).Google Scholar
  40. 40.
    E. D. Glendening and D. Feller, J. Am. Chem. Soc. 118, 6052 (1996).CrossRefGoogle Scholar
  41. 41.
    D. Ray, D. Feller, B. Michelle, et al., J. Phys. Chem. 100, 16116 (1996).CrossRefGoogle Scholar
  42. 42.
    A. L. Sargent, B. J. Mosley, J. W. Sibert, et al., J. Phys. Chem. A 110, 3826 (2006).CrossRefGoogle Scholar
  43. 43.
    G. H. Rounaghi, M. H. Arbab Zavvar, and R. Sanavi Khoshnood, J. Incl. Phenom. Macrocycl. Chem. 47, 101 (2003).CrossRefGoogle Scholar
  44. 44.
    G. H. Rounaghi and R. Sanavi Khoshnood, Iran. J. Chem. Chem. Eng. 20, 82 (2001).Google Scholar
  45. 45.
    G. H. Rounaghi, R. Sanavi Khoshnood, and M. H. Arbab Zavvar, J. Incl. Phenom. Macrocycl. Chem. 54, 247 (2006).CrossRefGoogle Scholar
  46. 46.
    R. Sanavi Khoshnood and E. Hatami, Russ. J. Phys. Chem. A 88, 2294 (2014).CrossRefGoogle Scholar
  47. 47.
    F. El-Dossoki, J. Chin. Chem. Soc. 54, 1129 (2007).CrossRefGoogle Scholar
  48. 48.
    M. Rezayi, Y. Lee, A. Kassim, et al., Chem. Cent. J. 6, 40 (2012).CrossRefGoogle Scholar
  49. 49.
    G. H. Rounaghi and R. Sanavi, Polish J. Chem. 80, 719 (2006).Google Scholar
  50. 50.
    E. Grunwald and C. Steel, J. Am. Chem. Soc. 117, 5687 (1995).CrossRefGoogle Scholar
  51. 51.
    Y. Inoue, F. Amano, N. Okada, et al., J. Chem. Soc., Perkin Trans. 2, 1239 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Setareh Akbari
    • 1
  • Razieh Sanavi Khoshnood
    • 1
  • Elaheh Hatami
    • 1
  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations