Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2636–2642 | Cite as

DFT Theoretical Calculation of the Site Selectivity of Dihydroxylated (5, 0) Zigzag Carbon Nanotube

Physical Chemistry of Nanoclusters and Nanomaterials

Abstract

Functionalization is an important method to change electrical and thermodynamic properties of carbon nanotubes. In this study, the effect of functionalization of a single-walled carbon nanotube (SWCNT) was investigated with the aid of density functional theory. For this case, a (5, 0) zigzag SWCNT model containing 60 C atoms with 10 hydrogen atoms added to the dangling bonds of the perimeter carbons was used. To model hydroxyl CNT two terminal H atoms were replaced by two –OH groups. All the functionalized CNTs are thermodynamically more stable and have higher dipole moment with respect to the pristine CNT. Depending on the positions of hydroxyl groups on CNT five isomers of C60H8(OH)2 were obtained. The structure of these five isomers and molecular properties such as the HOMO–LUMO gaps, the dipole moments, and the density of state were calculated. Our results indicate that the HOMO–LUMO gap strongly depends on the placement of the hydroxyl groups on the nanotubes. The isomers were hydroxyl groups locate on the anti-position show the highest distortions in the structure of the CNT.

Keywords

carbon nanotube ab initio calculation hydroxyl functionalization site selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991).CrossRefGoogle Scholar
  2. 2.
    A. Minett, F. Schüth, S. W. Sing, J. Weitkapmp, K. Atkinson, and S. Roth, in Handbook of Porous Solids (Wiley-VCH, Weinheim, 2002).Google Scholar
  3. 3.
    Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Nature 402, 273 (1999).CrossRefGoogle Scholar
  4. 4.
    O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, and G. Yue, Acc. Chem. Res. 35, 1045 (2002).CrossRefGoogle Scholar
  5. 5.
    R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G Wallace, A. Mazzoldi, D. de Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999).CrossRefGoogle Scholar
  6. 6.
    N. Ferrer-Anglada, V. Gomis, Z. El-Hachemi, U. D. Weglikovska, M. Kaempgen, and S. Roth, Phys. Status Solidi 203, 1082 (2006).CrossRefGoogle Scholar
  7. 7.
    Z. Chen, J. Appenzeller, Y. M. Lin, et al., Science 311, 1735 (2006).CrossRefGoogle Scholar
  8. 8.
    D. A. Britz and A. N. Khlobystov, Chem. Soc. Rev. 35, 637 (2006).CrossRefGoogle Scholar
  9. 9.
    Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, Jpn. J. Appl. Phys. 44, 1621 (2005).CrossRefGoogle Scholar
  10. 10.
    M. E. Kose, B. A. Harruff, Y. Lin, L. M. Veca, F. Lu, and Y. P. Sun, J. Phys. Chem. B 110, 14032 (2006).CrossRefGoogle Scholar
  11. 11.
    P. Serp, M. Corrias, and P. Kalck, Appl. Catal. A 253, 337 (2003).CrossRefGoogle Scholar
  12. 12.
    M. V. Veloso, A. G. S. Filho, J. M. Filho, S. B. Fagan, and R. Mota, Chem. Phys. Lett. 430, 71 (2006).CrossRefGoogle Scholar
  13. 13.
    T. Kar, B. Adkim, X. Duan, and R. Pachter, ChemPhysLett. 423, 126 (2006).Google Scholar
  14. 14.
    C. G. Salzmann, S. A. Llewellyn, G. Tobias, M. H. Y. Ward, Y. Huh, and M. L. H. Green, Adv. Mater. 19, 883 (2007).CrossRefGoogle Scholar
  15. 15.
    J. Zhao, J. P. Lu, J. Han, and C. K. Yang, Appl. Phys. Lett. 82, 3746 (2003).CrossRefGoogle Scholar
  16. 16.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  17. 17.
    M. J. Frisch et al., Gaussian 03, Revision E.01 (Gaussian Inc., Wallingford, CT, 2004).Google Scholar
  18. 18.
    Gaussview 03 (Gaussian Inc., Wallingford, CT, 2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of QomQomIran

Personalised recommendations