Skip to main content
Log in

Benzene Adsorption on C24, Si@C24, Si-Doped C24, and C20 Fullerenes

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The absorption feasibility of benzene molecule in the C24, Si@C24, Si-doped C24, and C20 fullerenes has been studied based on calculated electronic properties of these fullerenes using Density functional Theory (DFT). It is found that energy of benzene adsorption on C24, Si@C24, and Si-doped C24 fullerenes were in range of –2.93 and –51.19 kJ/mol with little changes in their electronic structure. The results demonstrated that the C24, Si@C24, and Si-doped C24 fullerenes cannot be employed as a chemical adsorbent or sensor for benzene. Silicon doping cannot significantly modify both the electronic properties and benzene adsorption energy of C24 fullerene. On the other hand, C20 fullerene exhibits a high sensitivity, so that the energy gap of the fullerene is changed almost 89.19% after the adsorption process. We concluded that the C20 fullerene can be employed as a reliable material for benzene detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Benzene (U. S. Public Health Service, U. S. Department of Health and Human Services, Atlanta, GA, 2007).

  2. M. Sittig, Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd ed. (Noyes, Park Ridge, NJ, 1985).

    Google Scholar 

  3. U. S. Environmental Protection Agency, Integrated Risk Information System (IRIS) on Benzene (Natl. Center for Environmental Assessment, Office of Research and Development, Washington, DC, 2009).

  4. P. Bechthold, S. Ardenghi, V. Cardoso Schwindt, E. A. González, P. V. Jasen, V. Orazi, M. E. Pronsato, and A. Juan, Appl. Surf. Sci. 282, 17 (2013).

    Article  CAS  Google Scholar 

  5. P. V. Jasen, E. A. González, G. Brizuela, and A. Juan, J. Mol. Catal. A: Chem. 323, 23 (2010).

    Article  CAS  Google Scholar 

  6. R. Koide, E. J. M. Hensen, J. F. Paul, S. Cristol, E. Payen, H. Nakamura, and R. A. van Santen, Catal. Today 130, 178 (2008).

    Article  CAS  Google Scholar 

  7. N. Fernandez, Y. Ferro, Y. Carissan, J. Marchois, and A. Allouche, Phys. Chem. Chem. Phys. 16, 1957 (2014).

    Article  CAS  Google Scholar 

  8. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).

    Article  CAS  Google Scholar 

  9. T. Akasaka, S. Nagase, and A. New, Family of Carbon Clusters (Kluwer Academic, Dordrecht, 2002).

    Google Scholar 

  10. K. Muthukumar and J. A. Larsson, J. Mater. Chem. 18, 3347 (2008).

    Article  CAS  Google Scholar 

  11. M. Yoon, S. Yang, and Z. Zhang, J. Chem. Phys. 131, 64707 (2009).

    Article  Google Scholar 

  12. T. W. Chamberlain, N. R. Champness, M. Schröder, and A. N. Khlobystov, Chem.–Eur. J. 17, 668 (2011).

    Article  CAS  Google Scholar 

  13. L. Senapati, J. Schrier, and K. B. Whaley, Nano Lett. 4, 2073 (2004).

    Article  CAS  Google Scholar 

  14. Xu Liang, Li Chao, Li Feng, Li Xiaojun, and Tao Shuqing, Spectrochim. Acta A 98, 183 (2012).

    Article  CAS  Google Scholar 

  15. Wen-Kai Zhao, Chuan-Lu Yang, Jing-Fen Zhao, Mei-Shan Wang, and Xiao-Guang Ma, Physica B 407, 2247 (2012).

    Article  CAS  Google Scholar 

  16. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Gelmont, D. Olevano, and B. Issendorff, Nature 407, 60 (2000).

    Article  CAS  Google Scholar 

  17. Y. P. An, C. L. Yang, M. S. Wang, X. G. Ma, and D. H. Wang, J. Clust. Sci. 22, 31 (2011).

    Article  CAS  Google Scholar 

  18. Y. P. An, C. L. Yang, M. S. Wang, X. G. Ma, and D. H. Wang, Curr. Appl. Phys. 10, 260 (2010).

    Article  Google Scholar 

  19. C. Tian et al., Chem. Phys. Lett. 511, 393 (2011).

    Article  CAS  Google Scholar 

  20. M. T. Baei, Heteroatom. Chem. 24, 516 (2013).

    Article  CAS  Google Scholar 

  21. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  23. M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  24. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1 TCI (Univ. of Wisconsin, Madison, 1998).

    Google Scholar 

  25. R. Kumar and A. Rani, Physica B 406, 1173 (2011).

    Article  CAS  Google Scholar 

  26. C. Kim, B. Kim, S. M. Lee, C. Jo, and Y. H. Lee, Phys. Rev. B 65, 165418 (2002).

    Article  Google Scholar 

  27. X. Zhou, W. Q. Tian, and X.-L. Wang, Sens. Actuators B: Chem. 151, 56 (2010).

    Article  CAS  Google Scholar 

  28. Y. Cui and C. M. Lieber, Science 291, 851 (2001).

    Article  CAS  Google Scholar 

  29. S. Li, Semiconductor Physical Electronics, 2nd ed. (Springer, USA, 2006).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baei, M.T. Benzene Adsorption on C24, Si@C24, Si-Doped C24, and C20 Fullerenes. Russ. J. Phys. Chem. 91, 2530–2538 (2017). https://doi.org/10.1134/S0036024417130143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417130143

Keywords

Navigation