Advertisement

Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2530–2538 | Cite as

Benzene Adsorption on C24, Si@C24, Si-Doped C24, and C20 Fullerenes

Structure of Matter and Quantum Chemistry
  • 14 Downloads

Abstract

The absorption feasibility of benzene molecule in the C24, Si@C24, Si-doped C24, and C20 fullerenes has been studied based on calculated electronic properties of these fullerenes using Density functional Theory (DFT). It is found that energy of benzene adsorption on C24, Si@C24, and Si-doped C24 fullerenes were in range of –2.93 and –51.19 kJ/mol with little changes in their electronic structure. The results demonstrated that the C24, Si@C24, and Si-doped C24 fullerenes cannot be employed as a chemical adsorbent or sensor for benzene. Silicon doping cannot significantly modify both the electronic properties and benzene adsorption energy of C24 fullerene. On the other hand, C20 fullerene exhibits a high sensitivity, so that the energy gap of the fullerene is changed almost 89.19% after the adsorption process. We concluded that the C20 fullerene can be employed as a reliable material for benzene detection.

Keywords

C24 and C20 fullerene benzene sensor DFT study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Benzene (U. S. Public Health Service, U. S. Department of Health and Human Services, Atlanta, GA, 2007).Google Scholar
  2. 2.
    M. Sittig, Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd ed. (Noyes, Park Ridge, NJ, 1985).Google Scholar
  3. 3.
    U. S. Environmental Protection Agency, Integrated Risk Information System (IRIS) on Benzene (Natl. Center for Environmental Assessment, Office of Research and Development, Washington, DC, 2009).Google Scholar
  4. 4.
    P. Bechthold, S. Ardenghi, V. Cardoso Schwindt, E. A. González, P. V. Jasen, V. Orazi, M. E. Pronsato, and A. Juan, Appl. Surf. Sci. 282, 17 (2013).CrossRefGoogle Scholar
  5. 5.
    P. V. Jasen, E. A. González, G. Brizuela, and A. Juan, J. Mol. Catal. A: Chem. 323, 23 (2010).CrossRefGoogle Scholar
  6. 6.
    R. Koide, E. J. M. Hensen, J. F. Paul, S. Cristol, E. Payen, H. Nakamura, and R. A. van Santen, Catal. Today 130, 178 (2008).CrossRefGoogle Scholar
  7. 7.
    N. Fernandez, Y. Ferro, Y. Carissan, J. Marchois, and A. Allouche, Phys. Chem. Chem. Phys. 16, 1957 (2014).CrossRefGoogle Scholar
  8. 8.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).CrossRefGoogle Scholar
  9. 9.
    T. Akasaka, S. Nagase, and A. New, Family of Carbon Clusters (Kluwer Academic, Dordrecht, 2002).Google Scholar
  10. 10.
    K. Muthukumar and J. A. Larsson, J. Mater. Chem. 18, 3347 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Yoon, S. Yang, and Z. Zhang, J. Chem. Phys. 131, 64707 (2009).CrossRefGoogle Scholar
  12. 12.
    T. W. Chamberlain, N. R. Champness, M. Schröder, and A. N. Khlobystov, Chem.–Eur. J. 17, 668 (2011).CrossRefGoogle Scholar
  13. 13.
    L. Senapati, J. Schrier, and K. B. Whaley, Nano Lett. 4, 2073 (2004).CrossRefGoogle Scholar
  14. 14.
    Xu Liang, Li Chao, Li Feng, Li Xiaojun, and Tao Shuqing, Spectrochim. Acta A 98, 183 (2012).CrossRefGoogle Scholar
  15. 15.
    Wen-Kai Zhao, Chuan-Lu Yang, Jing-Fen Zhao, Mei-Shan Wang, and Xiao-Guang Ma, Physica B 407, 2247 (2012).CrossRefGoogle Scholar
  16. 16.
    H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Gelmont, D. Olevano, and B. Issendorff, Nature 407, 60 (2000).CrossRefGoogle Scholar
  17. 17.
    Y. P. An, C. L. Yang, M. S. Wang, X. G. Ma, and D. H. Wang, J. Clust. Sci. 22, 31 (2011).CrossRefGoogle Scholar
  18. 18.
    Y. P. An, C. L. Yang, M. S. Wang, X. G. Ma, and D. H. Wang, Curr. Appl. Phys. 10, 260 (2010).CrossRefGoogle Scholar
  19. 19.
    C. Tian et al., Chem. Phys. Lett. 511, 393 (2011).CrossRefGoogle Scholar
  20. 20.
    M. T. Baei, Heteroatom. Chem. 24, 516 (2013).CrossRefGoogle Scholar
  21. 21.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  22. 22.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  23. 23.
    M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  24. 24.
    E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1 TCI (Univ. of Wisconsin, Madison, 1998).Google Scholar
  25. 25.
    R. Kumar and A. Rani, Physica B 406, 1173 (2011).CrossRefGoogle Scholar
  26. 26.
    C. Kim, B. Kim, S. M. Lee, C. Jo, and Y. H. Lee, Phys. Rev. B 65, 165418 (2002).CrossRefGoogle Scholar
  27. 27.
    X. Zhou, W. Q. Tian, and X.-L. Wang, Sens. Actuators B: Chem. 151, 56 (2010).CrossRefGoogle Scholar
  28. 28.
    Y. Cui and C. M. Lieber, Science 291, 851 (2001).CrossRefGoogle Scholar
  29. 29.
    S. Li, Semiconductor Physical Electronics, 2nd ed. (Springer, USA, 2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Azadshahr BranchIslamic Azad UniversityAzadshahr, GolestanIran

Personalised recommendations