Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2621–2628 | Cite as

Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Interlayer Cations, CEC, and Chain Length

  • Hua Chen
  • Yingjun Li
  • Yuanlin Zhou
  • Shanqiang Wang
  • Jian Zheng
  • Jiacai He
Physical Chemistry of Nanoclusters and Nanomaterials

Abstract

Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.

Keywords

molecular dynamics simulation organoclay structural properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. K. Bindu Shanmila, E. P. Ayswarya, B. T. Abraham, et al., Appl. Clay. Sci. 102, 220 (2014).CrossRefGoogle Scholar
  2. 2.
    E. P. Giannelis, Adv. Mater. 8, 1 (1996).CrossRefGoogle Scholar
  3. 3.
    N. Tz. Dintcheva, S. Al-Malaika, and E. Morici, Polym. Degrad. Stab. 12, 88 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Alexandre and P. Dubois, Mater. Sci. Eng. R 28, 1 (2000).CrossRefGoogle Scholar
  5. 5.
    H. Fischer, Mater. Sci. Eng. C 23, 763 (2003).CrossRefGoogle Scholar
  6. 6.
    G. Lagaly, Appl. Clay. Sci. 15, 1 (1999).CrossRefGoogle Scholar
  7. 7.
    E. P. Giannelis, Adv. Mater. 8, 1 (1996).CrossRefGoogle Scholar
  8. 8.
    K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigier, and J. Varlet, J. Polym. Sci. Polym. Phys. 39, 1360 (2001).CrossRefGoogle Scholar
  9. 9.
    J. Wang and Z. Mao, J. Appl. Polym. Sci. (2014). doi 10.1002/APP.39626Google Scholar
  10. 10.
    A. Olad, A. Rashidzadeh, and M. Amini, Adv. Polym. Tech. 32, 273 (2013).CrossRefGoogle Scholar
  11. 11.
    H. Heinz, R. A. Vaia, R. Krishnamoorti, and B. L. Farmer, Chem. Mater. 19, 59 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Fabrice, B. Olivier, D. Jean-Marc, J. Michel, et al., J. Phys. Chem. C 111, 13170 (2007).CrossRefGoogle Scholar
  13. 13.
    P. Chiougim and S. Yun-Hwei, Soil. Sci. Plan., Nos. 3–4, 497 (2007).Google Scholar
  14. 14.
    L. Wu, C. Yang, L. Mei, et al., Appl. Clay. Sci. 99, 266 (2014).CrossRefGoogle Scholar
  15. 15.
    Liu Tao, Tian Xiao-Feng, Zhao Yu, et al., Chin. Phys. B 19, 1 (2010).Google Scholar
  16. 16.
    X. Yin and G. Hu, Fiber. Polym. 16, 120 (2015).CrossRefGoogle Scholar
  17. 17.
    R. Ait-Akbour, P. Boustingorry, F. Leroux, et al., J. Colloid. Interf. Sci. 437, 227 (2015).CrossRefGoogle Scholar
  18. 18.
    L. Zhou, H. Chen, X. Jiang, et al., J. Colloid. Interf. Sci. 332, 16 (2009).CrossRefGoogle Scholar
  19. 19.
    T. Kwolek, M. Hodorowicz, K. Stadnicka, et al., J. Colloid. Interf. Sci. 264, 14 (2003).CrossRefGoogle Scholar
  20. 20.
    E. J. M. Hensen, T. J. Tambach, A. Bliek, and B. Smit, J. Chem. Phys. 115, 3322 (2001).CrossRefGoogle Scholar
  21. 21.
    L. Stephanie, T.-M. Goldrick, J. A. Greathouse, et al., J. Phys. Chem. C 119, 20880 (2015).CrossRefGoogle Scholar
  22. 22.
    K. Anoukou, A. Zaoui, F. Zaïri, et al., Physica E 65, 56 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Yao-Tsung and H. Hendrik, Chem. Mater. 22, 1595 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Zhu, W. Shen, Y. Ma, et al., J. Therm. Anal. Calorim. 109, 301 (2012).CrossRefGoogle Scholar
  25. 25.
    J. A. Smith, P. R. Jaffe, and C. T. Chiou, Environ. Sci. Technol. 24, 1167 (1990).CrossRefGoogle Scholar
  26. 26.
    J. A. Smith and A. Galan, Environ. Sci. Technol. 29, 685 (1995).CrossRefGoogle Scholar
  27. 27.
    A. Chatterjee, T. Iwasaki, T. Ebina, and H. Hayashi, J. Mol. Graph. 14, 302 (1996).CrossRefGoogle Scholar
  28. 28.
    D. E. Smith, Langmuir 14, 5959 (1998).CrossRefGoogle Scholar
  29. 29.
    R. Shahriyar, A. Khosravi, and A. Ahmadzadeh, Mol. Phys. 111, 3156 (2013).CrossRefGoogle Scholar
  30. 30.
    L. Sun, J. T. Tanskanen, J. T. Hirvi, et al., Chem. Phys. 455, 23 (2015).CrossRefGoogle Scholar
  31. 31.
    H. Sun, J. Zhang, L. Li, et al., Colloids Surf. A: Physicochem. Eng. Asp. 426, 26 (2013).CrossRefGoogle Scholar
  32. 32.
    H. Li, T. Kang, B. Zhang, et al., Comp. Mater. Sci. 117, 33 (2016).CrossRefGoogle Scholar
  33. 33.
    G. Wang, Y. Hua, X. Su, et al., Appl. Clay. Sci. 124–125, 111 (2016).CrossRefGoogle Scholar
  34. 34.
    L. Wu, L. Liao, and Lv. Guocheng, J. Colloid. Interf. Sci. 454, 1 (2015).CrossRefGoogle Scholar
  35. 35.
    F. Gardebien, J. L. Brédas, and R. Lazzaroni, J. Phys. Chem. B 109, 12287 (2005).CrossRefGoogle Scholar
  36. 36.
    F. Gardebien, A. Gaudel-Siri, J. L. Brédas, et al., J. Phys. Chem. B 108, 10678 (2004).CrossRefGoogle Scholar
  37. 37.
    Q. H. Zeng, A. B. Yu, G. Q. Lu, et al., J. Phys. Chem. B 108, 10025 (2004).CrossRefGoogle Scholar
  38. 38.
    R. Zhu, W. Hu, Z. You, et al., J. Colloid. Interf. Sci. 377, 328 (2012).CrossRefGoogle Scholar
  39. 39.
    S. Ganguly, K. Dana, and S. Ghatak, J. Therm. Anal. Calorim. 100, 71 (2010).CrossRefGoogle Scholar
  40. 40.
    M. Veiskarami, M. N. Sarvi, and A. R. Mokhtari, Appl. Clay. Sci. (2015). doi 10.1016/j.clay.2015.10.026Google Scholar
  41. 41.
    J. A. Smith, P. R. Jaffé, and C. T. Chiou, Environ. Sci. Technol. 24, 1167 (1990).CrossRefGoogle Scholar
  42. 42.
    J. A. Smith and A. Galon, Environ. Sci. Technol. 29, 685 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Hua Chen
    • 1
    • 2
  • Yingjun Li
    • 1
    • 2
  • Yuanlin Zhou
    • 1
    • 2
  • Shanqiang Wang
    • 3
  • Jian Zheng
    • 1
    • 2
  • Jiacai He
    • 1
    • 2
  1. 1.State Key Laboratory Cultivation Base for Nonmetal Composites and Functional MaterialsSouthwest University of Science and TechnologyMianyangP.R. China
  2. 2.School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangP.R. China
  3. 3.People’s Liberation Army Institute of Chemical DefenseBeijingP.R. China

Personalised recommendations