Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2643–2650 | Cite as

CoFe2O4@TiO2@Au Core-Shell Structured Microspheres: Synthesis and Photocatalyltic Properties

  • X. H. Guo
  • J. Q. Ma
  • H. G. Ge
Physical Chemistry of Nanoclusters and Nanomaterials


A facile and efficient method for fabrication of magnetic composite microspheres CoFe2O4@TiO2@Au is demonstrated. The shells of anatase TiO2 were coated onto a magnetic CoFe2O4 core via liquid-phase deposition procedure, and then Au nanoparticles were deposited onto CoFe2O4@TiO2 microspheres through seed-mediated growth. XRD, TEM, and VSM were used to investigate the structure, morphology and magnetic properties of the samples, their photocatalytic activity were also tested. Heterostructure of CoFe2O4@TiO2@Au was confirmed by different measurements. Compared to unmodified CoFe2O4@TiO2 microspheres, CoFe2O4@TiO2@Au microspheres showed higher photocatalytic activity for Rhodamine B (RhB) degradation in water.


magnetic photocatalyst core-shell structure liquid-phase deposition Au nanoparticle photocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Carey, J. Lawrence, and H. M. Tosine, Bull. Environ. Contam. Toxicol. 16, 697 (1976).CrossRefGoogle Scholar
  2. 2.
    L. X. Yin, D. Wang, J. F. Huang, L. Y. Cao, H. B. Ouyang, J. P. Wu, and X. Yong, Ceram. Int. 41, 3288 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. M. Liang, N. Guo, L. L. Li, R. Q. Li, G. J. Ji, and S. C. Gan, Appl. Surf. Sci. 332, 32 (2015).CrossRefGoogle Scholar
  4. 4.
    U. I. Gaya and A. H. Abdullah, J. Photochem. Photobiol. C: Photochem. Rev. 9, 1 (2008).CrossRefGoogle Scholar
  5. 5.
    K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005).CrossRefGoogle Scholar
  6. 6.
    A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
  7. 7.
    A. Markowska-Szczupak, K. Ulfig, and A. W. Morawski, Catal. Today 169, 249 (2011).CrossRefGoogle Scholar
  8. 8.
    B. Wang, G. X. Zhang, X. Leng, Z. M. Sun, and S. L. Zheng, J. Hazard. Mater. 285, 212 (2015).CrossRefGoogle Scholar
  9. 9.
    C. Minero, E. Pelizzetti, P. Pichat, M. Sega, and M. Vincenti, Environ. Sci. Technol. 29, 2226 (1995).CrossRefGoogle Scholar
  10. 10.
    H. Gerischer and A. Heller, J. Phys. Chem. 95, 5261 (1991).CrossRefGoogle Scholar
  11. 11.
    R. L. Pozzo, M. A. Baltanás, and A. E. Cassano, Catal. Today 39, 219 (1997).CrossRefGoogle Scholar
  12. 12.
    A. Y. Shan, T. I. M. Ghazi, and S. A. Rashid, Appl. Catal. A: Gen. 389, 1 (2010).CrossRefGoogle Scholar
  13. 13.
    W. L. Xiong and L. A. Archer, Adv. Mater. 20, 1853 (2008).CrossRefGoogle Scholar
  14. 14.
    D. Beydoun, R. Amal, G. K. C. Low, and S. McEvoy, J. Phys. Chem. B 104, 4387 (2000).CrossRefGoogle Scholar
  15. 15.
    S. Watson, D. Beydoun, and R. Alllal, J. Photochem. Photobiol. A: Chem. 148, 303 (2002).CrossRefGoogle Scholar
  16. 16.
    S. Rana, R. S. Srivastava, M. M. Sorensson, and R. D. K. Misra, Mater. Sci. Eng. B 119, 144 (2005).CrossRefGoogle Scholar
  17. 17.
    P. M. Alvarez, J. Jaramillo, F. Lopez-Pinero, and P. K. Plucinski, Appl. Catal. B: Environ. 100, 338 (2010).CrossRefGoogle Scholar
  18. 18.
    W. Li, Y. H. Deng, Z. X. Wu, X. F. Qian, J. P. Yang, Y. Wang, D. Gu, F. Zhang, B. Tu, and D. Y. Zhao, J. Am. Chem. Soc. 133, 15830 (2011).CrossRefGoogle Scholar
  19. 19.
    M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
  20. 20.
    A. Wold, Chem. Mater. 5, 280 (1993).CrossRefGoogle Scholar
  21. 21.
    J. F. Zhu and M. Zach, Colloid Interface Sci. 14, 260 (2009).Google Scholar
  22. 22.
    S. J. Stewart, M. Fernández-Garcia, C. Belver, B. S. Mun, and F. G. Requejo, J. Phys. Chem. B 110, 16482 (2006).CrossRefGoogle Scholar
  23. 23.
    M. Hosseini, M. M. Momeni, and M. Faraji, J. Mol. Catal. A: Chem. 335, 199 (2011).CrossRefGoogle Scholar
  24. 24.
    X. Z. Li and F. B. Li, Environ. Sci. Technol. 35, 2381 (2001).CrossRefGoogle Scholar
  25. 25.
    C. G. Silva, R, Juárez, T. Marino, R. Molinari, and H. Garcia, J. Am. Chem. Soc. 133, 595 (2011).CrossRefGoogle Scholar
  26. 26.
    C. M. Cheng, Y. H. Wen, X. F. Xu, and H. C. Gu, J. Mater. Chem. 19, 8782 (2009).CrossRefGoogle Scholar
  27. 27.
    J. Liu, Z. K. Sun, Y. H. Deng, Y. Zou, C. Y. Li, X. H. Guo, L. Q. Xiong, Y. Gao, F. Y. Li, and D. Y. Zhao, Angew. Chem. Int. Ed. 48, 5875 (2009).CrossRefGoogle Scholar
  28. 28.
    G. Decher and J. D. Hong, Ber. Bunsen-Ges. Phys. Chem. 95, 1430 (1991).CrossRefGoogle Scholar
  29. 29.
    S. Schneider, P. Halbig, H. Grau, and U. Nickel, Photochem. Photobiol. 60, 605 (1994).CrossRefGoogle Scholar
  30. 30.
    N. R. Jana, L. Gearheart, and C. J. Murphy, Langmuir 17, 6782 (2001).CrossRefGoogle Scholar
  31. 31.
    H. Nagayama, H. Honda, and H. Kawahara, J. Electrochem. Soc. 135, 2013 (1988).CrossRefGoogle Scholar
  32. 32.
    S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami, Chem. Lett. 25, 433 (1996).CrossRefGoogle Scholar
  33. 33.
    H. Maki, Y. Okumura, H. Ikuta, and M. Mizuhata, J. Phys. Chem. C 118, 11964 (2014).CrossRefGoogle Scholar
  34. 34.
    H. Gerischer and A. Heller, J. Phys. Chem. 95, 5261 (1991).CrossRefGoogle Scholar
  35. 35.
    C. M. Wang, A. Heller, and H. Gerischer, J. Am. Chem. Soc. 114, 5230 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Shaanxi Province Key Laboratory of Catalytic Fundamentals and ApplicationsShaanxiP.R. China
  2. 2.School of Chemical and Environmental SciencesShaanxi University of TechnologyShaanxiP.R. China

Personalised recommendations