Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2585–2592 | Cite as

Formation of Water Complexes with Organic Compounds in Solid Matter. IR Manifestation and DFT Study

  • I. I. Grinvald
  • I. Yu. Kalagaev
  • A. N. Petuchov
  • I. V. Vorotyntsev
  • V. M. Vorotyntsev
  • I. A. Spirin
  • A. I. Grushevskaya
  • R. V. Kapustin
Structure of Matter and Quantum Chemistry


In terms of FTIR study it was estimated that water forms the complexes with furan, thiophene, dichloromethane, tribromomethane in low temperature films at 90–150 K interval and with benzene in KBr matrix at ambient temperature. The mechanism of intermolecular interaction was simulated by ab initio calculation using DFT method. It was shown that complex formation occurs due to arising of hydrogen bond between hydronium ion of water cluster or single water molecule with organic components.


FTIR spectroscopy low temperatures hydration solid matrix furan thiophene benzene water hydrogen bond 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Eisenberg and V. Kauzmann, Structure and Properties of Water (Gidrometeoizdat, Leningrad, 1975) [in Russian].Google Scholar
  2. 2.
    G. N. Zatsepina, Properties and Structure of Water (Mosk. Gos. Univ., Moscow, 1974) [in Russian].Google Scholar
  3. 3.
    F. A. Carrey, Organic Chemistry, 5th ed. (McGraw-Hill, New York, 2004).Google Scholar
  4. 4.
    Y. Marcus and G. Hefter, Chem. Rev. 106, 4585 (2006).CrossRefGoogle Scholar
  5. 5.
    V. I. Bakhmutov, Dihydrogen Bonds (Wiley, Chichester, 2008).CrossRefGoogle Scholar
  6. 6.
    T. Bürgi, M. Schütz, and S. Leutwyler, J. Chem. Phys. 103, 6350 (1995).CrossRefGoogle Scholar
  7. 7.
    A. Courty, M. Mons, I. Dimicoli, F. Piuzzi, V. Brenner, and Ph. Millie, J. Phys. Chem. A 102, 4890 (1998).CrossRefGoogle Scholar
  8. 8.
    T. Ebata, N. Mizuochi, T. Watanabe, and N. Mikami, J. Phys. Chem. 100, 546 (1996).CrossRefGoogle Scholar
  9. 9.
    H. Watanabe and S. Iwata, J. Chem. Phys. 105, 420 (1996).CrossRefGoogle Scholar
  10. 10.
    D. Ahn, S. Park and S. Lee, J. Phys. Chem. A 107, 131 (2003).CrossRefGoogle Scholar
  11. 11.
    D. Feller, J. Phys. Chem. A 103, 7558 (1999).CrossRefGoogle Scholar
  12. 12.
    R. Parthasarathi, V. Subramanian, and N. Sathyamurthy, J. Phys. Chem. A 109, 843 (2005).CrossRefGoogle Scholar
  13. 13.
    M. Schütz, T. Bürgi, S. Leutwyler, and T. Fischer, J. Chem. Phys. 98, 3763 (1993).CrossRefGoogle Scholar
  14. 14.
    D. Kaur and S. Khanna, Comp. Theor. Chem. 963, 71 (2011).CrossRefGoogle Scholar
  15. 15.
    P. Hobza and C. Sandorfy, Can. J. Chem. 62, 606 (1984).CrossRefGoogle Scholar
  16. 16.
    E. S. Kryachko and Th. Zeegers-Huyskens, J. Phys. Chem. A 105, 7118 (2001).CrossRefGoogle Scholar
  17. 17.
    A. K. Chandra, M. T. Nguyen, and Th. Zeegers-Huyskens, J. Phys. Chem. A 102, 6010 (1998).CrossRefGoogle Scholar
  18. 18.
    K. Schoone, J. Smets, R. Ramaekers, L. Houben, L. Adamowicz, and G. Maes, J. Mol. Struct. 649, 61 (2003).CrossRefGoogle Scholar
  19. 19.
    N. Dozova, L. Krim, M. E. Alikhani, and N. Lacome, J. Phys. Chem. A 109, 10273 (2005).CrossRefGoogle Scholar
  20. 20.
    I. I. Grinvald, I. Yu. Kalagaev, A. N. Artemov, E. A. Sutyagina, and I. A. Spirin, Russ. Chem. Bull. 63, 605 (2014).CrossRefGoogle Scholar
  21. 21.
    I. V. Vorotyntsev, I. I. Grinvald, I. Yu. Kagalaev, A. N. Petukhov, E. A. Sutyagina, A. V. Vorotyntsev, E. V. Derbisher, N. A. Petukhova, and V. M. Vorotyntsev, Russ. J. Phys. Chem. A 88, 625 (2014).CrossRefGoogle Scholar
  22. 22.
    I. V. Drebuzchak and S. G. Kozlova, Russ. J. Struct. Chem. 51, 172 (2010).Google Scholar
  23. 23.
    G. Zundel, Hydration and Intermolecular Interaction (Academic, New York, London, 1969).Google Scholar
  24. 24.
    R. P. Bell, The Proton in Chemistry (Cornell Univ. Press, Ithaca, New York, 1973).CrossRefGoogle Scholar
  25. 25.
    L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules (Nauka, Moscow, 1970) [in Russian].Google Scholar
  26. 26.
    O. A. Reutov, I. P. Beletskaya, and K. P. Butin, CHAcids (Pergamon, Oxford, 1978).Google Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision E.01 (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
  28. 28.
    V. I. Baranovsky, Quantum Mechanics and Quantum Chemistry (Academy, Moscow, 2008).Google Scholar
  29. 29.
    R. M. Silverstein, Spectrometric Identification of Organic Compounds, 7th ed. (Wiley, New York, 2005).Google Scholar
  30. 30.
    K. Nakanishi, Infrared Absorption Spectroscopy (Holden-Day, San Francisco, CA, 1962).Google Scholar
  31. 31.
    M. V. Basilevsky and M. V. Vener, Russ. Chem. Rev. 72, 1 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. I. Grinvald
    • 1
  • I. Yu. Kalagaev
    • 1
  • A. N. Petuchov
    • 1
  • I. V. Vorotyntsev
    • 1
  • V. M. Vorotyntsev
    • 1
  • I. A. Spirin
    • 1
  • A. I. Grushevskaya
    • 1
  • R. V. Kapustin
    • 1
  1. 1.Alekseev Institute of Physical Chemistry and Material Science of Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia

Personalised recommendations