Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2680–2685 | Cite as

Synthesis of ZnO Photocatalysts Using Various Surfactants

  • Chengli Yao
  • Jinmiao Zhu
  • Hongying Li
  • Bin Zheng
  • Yanxin Wei
Photochemistry and Magnetochemistry


Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are owed to its morphology and defect structure. ZnO particles were successfully synthesized by chemical precipitation. CTAB (cetyltrimethylammonium bromide), BS-12 (dodecyl dimethyl betaine) and graphene oxide (GO) were selected as templates to induce the formation of ZnO, respectively. By varying the amount of surfactant added during the synthesis process, the structural properties and the crystalline phase of the synthesized nanospheres were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet and visible spectrophotometry (UV‒Vis). Simultaneously, photo catalytic degradation of Rhodamine B (RhB) was carried out under natural sunlight irradiation while ZnO or ZnO/GO particles were used as catalyst. GO is prone to induce formation of wurtzite hexagonal phase of ZnO. Compared with CTAB and BS-12, ZnO/GO composites had a remarkably photocatalytic degradation.


zinc oxide surfactant template graphene oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Shi, P. Yang, J. Wang, A. Zhang, Y. Zhu, et al., CrystEngComm. 14, 5996 (2012).CrossRefGoogle Scholar
  2. 2.
    Z. J. Yu, M. R. Kumar, D. L. Sun, L. T. Wang, et al., Mater. Lett. 166, 284 (2016).CrossRefGoogle Scholar
  3. 3.
    Z. S. Wang, C. H. Huang, Y. Y. Huang, et al., Chem. Mater. 13, 678 (2001).CrossRefGoogle Scholar
  4. 4.
    M. L. Curri, R. Comparelli, et al., Mater. Sci. Eng. C 23, 285 (2003).CrossRefGoogle Scholar
  5. 5.
    R. Wu and C. Xie, Mater. Res. Bull. 39, 637 (2004)CrossRefGoogle Scholar
  6. 6.
    Z. Hu, G. Oskam, and P. C. Searson, J. Colloid Interface Sci. 263, 454 (2003).CrossRefGoogle Scholar
  7. 7.
    Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).CrossRefGoogle Scholar
  8. 8.
    J. H. Kim, W. C. Choi, H. Y. Kim, Y. Kang, and Y. K. Park, Powder Technol. 153, 166 (2005).CrossRefGoogle Scholar
  9. 9.
    S. Y. Chu, T. M. Yan, and S. L. Chen, J. Mater. Sci. Lett. 19, 349 (2000).CrossRefGoogle Scholar
  10. 10.
    S. Komarneni, M. Bruno, and E. Mariani, Mater. Res. Bull. 35, 1843, (2000).CrossRefGoogle Scholar
  11. 11.
    T. Tani, L. Madler, and S. E. Pratsinis, J. Nanopart. Res. 4, 337 (2002).CrossRefGoogle Scholar
  12. 12.
    Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Function. Mater. 13, 9 (2003).CrossRefGoogle Scholar
  13. 13.
    W. Ao, J. Li, H. Yang, X. Zeng, and X. Ma, Powder Technol. 168, 148 (2006).CrossRefGoogle Scholar
  14. 14.
    K. Choi, T. Kang, and S. G. Oh, Mater. Lett. 75, 240 (2012).CrossRefGoogle Scholar
  15. 15.
    T. Thilagavathi and D. Geetha, Appl. Nanosci. 4, 127 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Tan, E. M. Steinmiller, and K. S. Choi, Langmuir 21, 9618 (2005).CrossRefGoogle Scholar
  17. 17.
    D. Chandra, S. Mridha, D. Basak, and A. Bhaumik, Chem. Commun. 17, 2384 (2009).CrossRefGoogle Scholar
  18. 18.
    S. H. Kim, T. Y. Olson, et al., Microporous Mesoporous Mater. 151, 64 (2012).CrossRefGoogle Scholar
  19. 19.
    X. Pan, M. Q. Yang, and Y. J. Xu, Phys. Chem. Chem. Phys. 16, 5589 (2014).CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, Z. R. Tang, X. Fu, and Y. J. Xu, ACS Nano 5, 7426 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Moussa, E. Girot, K. Mozet, et al., Appl. Catal. B: Environ. 185, 11 (2016).CrossRefGoogle Scholar
  22. 22.
    O. Akhavan, Carbon 49, 11 (2011).CrossRefGoogle Scholar
  23. 23.
    T. Xu, L. Zhang, H. Cheng, and Y. Zhu, Appl. Catal. B: Environ. 101, 382 (2011).CrossRefGoogle Scholar
  24. 24.
    J. Wang, T. Tsuzuki, B. Tang, et al., ACS Appl. Mater. Interfaces 4, 3084 (2012).CrossRefGoogle Scholar
  25. 25.
    Y. Wang, F. Wang, and J. He, Nanoscale 5, 11291 (2013).CrossRefGoogle Scholar
  26. 26.
    Y. Cheng, Y. Fan, Y. Pei, and M. Qiao, Catal. Sci. Technol. 5, 3903 (2015).CrossRefGoogle Scholar
  27. 27.
    C. Yao, A. Xie, Y. Shen, et al., Cryst. Res. Technol. 49, 982 (2014).CrossRefGoogle Scholar
  28. 28.
    H. Zhang, A. Xie, Y. Shen, et al., Phys. Chem. Chem. Phys. 14, 12757 (2012).CrossRefGoogle Scholar
  29. 29.
    S. Deng, V. Tjoa, et al., J. Am. Chem. Soc. 134, 4905 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, ACS Nano 4, 2822 (2010).CrossRefGoogle Scholar
  31. 31.
    Q. Yu, W. Fu, C. Yu, H. Yang, et al., J. Phys. Chem. C 111, 17521 (2007).CrossRefGoogle Scholar
  32. 32.
    X. Pan, M. Q. Yang, and Y. J. Xu, Phys. Chem. Chem. Phys. 16, 5589 (2014).CrossRefGoogle Scholar
  33. 33.
    Y. Liang, D. Wu, X. Feng, and K. Müllen, Adv. Mater. 21, 1679 (2009).CrossRefGoogle Scholar
  34. 34.
    L. Kashinath, K. Namratha, and K. Byrappa, Mater. Today: Proc. 3, 74 (2016).CrossRefGoogle Scholar
  35. 35.
    K. Kaviyarasu and P. A. Devarajan, Adv. Mater. Lett. 4, 582 (2013).CrossRefGoogle Scholar
  36. 36.
    Y. Gong, X. Meng, C. Zou, Y. Yao, et al., Mater. Lett. 106, 171 (2013).CrossRefGoogle Scholar
  37. 37.
    T. Xu, L. Zhang, H. Cheng, and Y. Zhu, Appl. Catal. B: Environ. 101, 382 (2011)CrossRefGoogle Scholar
  38. 38.
    Q. P. Luo, X. Y. Yu, B. X. Lei, et al., J. Phys. Chem. C 116, 8111 (2012).CrossRefGoogle Scholar
  39. 39.
    A. R. Marlinda, N. M. Huang, M. R. Muhamad, et al., Mater. Lett. 80, 9 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Chengli Yao
    • 1
  • Jinmiao Zhu
    • 1
  • Hongying Li
    • 1
  • Bin Zheng
    • 1
  • Yanxin Wei
    • 1
  1. 1.School of Chemistry and Chemical EngineeringHefei Normal UniversityAnhuiP.R. China

Personalised recommendations