Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2495–2502 | Cite as

Molecular Interactions in 1,4-Dioxane, Tetrahydrofuran, and Ethyl Acetate Solutions of 1,1′-Bis(4-isopropyloxyacetylphenoxy)cyclohexane on Reological, Density, and Acoustic Behavior

  • B. B. Dhaduk
  • Ch. B. Patel
  • P. H. Parsania
Physical Chemistry of Solutions


Various thermo-acoustical parameters of 1,4-dioxane, tetrahydofuran and ethylacetae solutions of 1,1′-bis(4-isopropyloxyacetylphenoxy)cyclohexane were determined at different temperatures using density, viscosity and ultrasonic speed and correlated with concentration. Linear increase of ultrasonic speed, specific acoustical impedance, Rao’s molar sound function, Van der Waals constant and free volume with concentration C and decreased with temperature. Linear decrease of adiabatic compressibility, internal pressure, intermolecular free path length, classical absorption coefficient, and viscous relaxation time with concentration and increased with temperature indicated existence of strong molecular interactions in solutions and further supported by positive values of solvation number. Gibbs free energy of activation decreased with C in all three systems. It is decreased with T in 1,4-dioxane, while increased in tetrahydrofuran and ethyl acetate. Both enthalpy of activation and entropy of activation are increased gradually with C in 1,4-dioxane, while they are negative and remained practically independent of concentration in 1,4-dioxane and tetrahydofuran systems.


density viscosity solvation number molecular interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. V. Jahagirdar, B. R. Arbad, A. A. Walvekar, A. G. Shankarwar, and M. K. Lande, J. Mol. Liq. 85, 361 (2000).CrossRefGoogle Scholar
  2. 2.
    G. Savaroglu and E. Aral, Fluid Phase Equilib. 215, 253 (2004).CrossRefGoogle Scholar
  3. 3.
    P. Krishnamurthi and P. A. Thenmozhi, J. Chem. Pharma. Res. 4, 4671 (2012).Google Scholar
  4. 4.
    C. V. Suryanarayana and J. Kuppusami, J. Acoust. Soc. Ind. 4, 75 (1976).Google Scholar
  5. 5.
    J. F. Rajasekaran, R. Balakrishnan, and V. J. Arumugam, J. Pure Appl. Ultrason. 19, 76 (1997).Google Scholar
  6. 6.
    G. Ravichandran and T. K. Nambinarayanan, Acoust. Lett. 19, 245 (1996).Google Scholar
  7. 7.
    A. Dhote and S. Aswale, Adv. Appl. Sci. Res. 3, 2299 (2012).Google Scholar
  8. 8.
    V. Frenkle, Adv. Drug Deliv. Rev. 60, 1193 (2008).CrossRefGoogle Scholar
  9. 9.
    T. J. Mason, Sonochemistry: The Uses of Ultrasound in Chemistry (Roy. Soc. Chem., London, 1990).Google Scholar
  10. 10.
    J. A. Szpunar and D. C. Hinz, J. Mater. Sci. 24, 1233 (1989).CrossRefGoogle Scholar
  11. 11.
    J. J. Gilman, B. J. Cunningham, and A. C. Holt, Sci. Eng. A 39, 125 (1990).Google Scholar
  12. 12.
    A. I. Vogel, A. R. Tatchell, B. S. Furnis, A. J. Hannaford, and P. W. G. Smith, Vogel’s Textbook of Practical Organic Chemistry, 5th ed. (Addison Wesley Longman, London, 1998)Google Scholar
  13. 13.
    B. B. Dhaduk, C. B. Patel, and P. H. Parsania, Lett. Drug. Des. Discov. 12, 152 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Habibullah, I. M. Rahman, M. A. Uddin, M. Anawar, M. Alam, K. Iwakabe, and H. Hasegawa, J. Chem. Eng. Data 58, 2887 (2013).CrossRefGoogle Scholar
  15. 15.
    R. A. Clará, A. C. Gómez Marigliano, D. Morales, and H. N. Solimo, J. Chem. Eng. Data 55, 5862 (2010).CrossRefGoogle Scholar
  16. 16.
    M. N. Sovilj, J. Chem. Eng. Data 40, 1058 (1995).CrossRefGoogle Scholar
  17. 17.
    U. B. Kadam, A. P. Hiray, A. B. Sawant, and M. Hasan, J. Chem. Eng. Data 51, 60 (2006).CrossRefGoogle Scholar
  18. 18.
    G. Savaroglu and E. Aral, J. Mol. Liq. 105, 79 (2003).CrossRefGoogle Scholar
  19. 19.
    H. Djojoputro and S. Ismadji, J. Chem. Eng. Data 50, 727 (2005).CrossRefGoogle Scholar
  20. 20.
    P. S. Nikam, T. R. Mahale, and M. Hasan, J. Chem. Eng. Data 41, 1055 (1996).CrossRefGoogle Scholar
  21. 21.
    J. Resa, C. Gonzalez, J. Goenaga, and M. Iglesias, Phys. Chem. Liq. 43, 65 (2005).CrossRefGoogle Scholar
  22. 22.
    A. Mariano, A. Camacho, M. Postigo, A. Valen, H. Artigas, F. Royo, and J. Urieta, J. Chem. Eng. 17, 459 (2000).Google Scholar
  23. 23.
    M. T. Zafarani-Moattar and R. Majdan-Cegincara, J. Chem. Eng. Data 52, 2359 (2007).CrossRefGoogle Scholar
  24. 24.
    M. Gupta, I. Vibhu, and J. Shukla, Fluid Phase Equilib. 244, 26 (2006).CrossRefGoogle Scholar
  25. 25.
    B. B. Dhaduk and P. H. Parsania, Int. Lett. Chem. Phys. Astron. 8, 1 (2015).CrossRefGoogle Scholar
  26. 26.
    B. D. Bhuva and P. H. Parsania, J. Sol. Chem. 40, 719 (2011).CrossRefGoogle Scholar
  27. 27.
    U. G. Pathak, J. V. Patel, and P. H. Parsania, J. Sol. Chem. 41, 755 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Polymer Division, Department of ChemistrySaurashtra UniversityRajkotIndia

Personalised recommendations