Advertisement

Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2686–2689 | Cite as

Magnetic Interaction between Iron Particles in Lithium Phosphate Systems

  • C. Andronache
  • M. Balasoiu
  • D. Racolta
Photochemistry and Magnetochemistry

Abstract

The glasses from the system xFe2O3(100 – x)[P2O5 · Li2О] with 0 < x < 50 mol % are studied. These materials have been prepared and characterized by magnetic susceptibility. Iron ions generally modify in different ways the local structure of these glasses, depending on the presence of Li2O in the glass matrix. The results have shown the presence of antiferromagnetic or ferromagnetic interactions between iron ions in the studied glass and temperature range. These data revealed that the valence states and the distribution of iron ions in the glass matrix depend on the Fe2O3 content, and can determine the decreasing of magnetic momentum (μeff).

Keywords

lithium phosphate glasses magnetic properties magnetic susceptibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Srilatha, K. Sambasiva Rao, Y. Gandhi, V. Ravikumar, and N. Veeraiah, J. Alloys Compd. 507, 391 (2010).CrossRefGoogle Scholar
  2. 2.
    T. Sankarappa, G. B. Devidas, M. P. Kumar, S. Kumar, and B. V. Kumar, J. Alloys Compd. 469, 576 (2009).CrossRefGoogle Scholar
  3. 3.
    W. J. Chung, J. Choi, and Y. G. Choi, J. Alloys Compd. 505, 661 (2010).CrossRefGoogle Scholar
  4. 4.
    S. P. Singh, R. P. S. Chakradhar, J. L. Rao, and B. Karmakar, Physica B 405, 2157 (2010).CrossRefGoogle Scholar
  5. 5.
    A. Hirofumi, O. Satoshi, F. Koji, M. Shunsuke, and T. Katsuhisa, Phys. Rev. B 80, 134408 (2009).CrossRefGoogle Scholar
  6. 6.
    P. Pascuta, G. Borodi, A. Popa, V. Dan, and E. Culea, Mater. Chem. Phys. 123, 767 (2010).CrossRefGoogle Scholar
  7. 7.
    R. K. Singh and A. Srinivasan, J. Magn. Magn. Mater. 322, 2018 (2010).CrossRefGoogle Scholar
  8. 8.
    S. Aqdim and M. Ouchetto, Adv. Mater. Phys. Chem. 3, 332 (2013).CrossRefGoogle Scholar
  9. 9.
    R. K. Singh and A. Srinivasan, J. Magn. Magn. Mater. 322, 2018 (2010).CrossRefGoogle Scholar
  10. 10.
    P. A. Bingham, R. J. Hand, S. D. Forder, and A. La Vay-sierre, J. Hazard. Mater. 119, 125 (2005).CrossRefGoogle Scholar
  11. 11.
    R. K. Brow, J. Non-Cryst. Solids 1, 263 (2000).Google Scholar
  12. 12.
    R. Yang et al., J. Alloys Compd. 513, 97 (2012).CrossRefGoogle Scholar
  13. 13.
    S. P. Chaudhuri and S. K. Patra, Mater. Sci. 35, 4735 (2000).CrossRefGoogle Scholar
  14. 14.
    L. K. Wilson, E. J. Friebele, and D. L. Kinser, in Proceedings of the International Symposium on Amorphous Magnetism (Plenum, New York, 1975), p.65.Google Scholar
  15. 15.
    A. Mogus-Milankovic et al., Phys. Chem. Glasses 36, 31 (1995).Google Scholar
  16. 16.
    R. Iordanova et al., J. Non-Cryst. Solids 221, 227 (1998).CrossRefGoogle Scholar
  17. 17.
    G. Srinivasarao and N. Veeraiah, J. Phys. Chem. Solids 63, 705 (2002).CrossRefGoogle Scholar
  18. 18.
    C. Andronache, Mater. Chem. Phys. 136, 281 (2012).CrossRefGoogle Scholar
  19. 19.
    B. Kumar and C. H. Chen, J. Appl. Phys. 75, 6760 (1994).CrossRefGoogle Scholar
  20. 20.
    L. D. Bogomolova, N. A. Krasilnikova, V. L. Bogdanov, V. D. Khalilev, and V. Mitrofanov, J. Non-Cryst. Solids 188, 130 (1995).CrossRefGoogle Scholar
  21. 21.
    A. M. Vorotinov and K. A. Sablina, Solid State Commun. 87, 209 (1993).CrossRefGoogle Scholar
  22. 22.
    R. K. Singh, G. P. Kothiyal, and A. Srinivasan, J. Non-Cryst. Solids 354, 3166 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Technical University of Cluj Napoca, North University Center of Baia MareBaia MareRomania
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  3. 3.Horia Hulubei National Institute of Physics and Nuclear EngineeringMagureleRomania

Personalised recommendations