Russian Journal of Physical Chemistry A

, Volume 91, Issue 13, pp 2600–2607 | Cite as

Modelling of the Hypothalamic-Pituitary-Adrenal Axis Perturbations by Externally Induced Cholesterol Pulses of Finite Duration and with Asymmetrically Distributed Concentration Profile

  • A. Stanojević
  • V. M. Marković
  • Ž. Čupić
  • V. Vukojević
  • L. Kolar-Anić
Structure of Matter and Quantum Chemistry


A model was developed that can be used to study the effect of gradual cholesterol intake by food on the HPA axis dynamics. Namely, well defined oscillatory dynamics of vital neuroendocrine hypothalamic-pituitary-adrenal (HPA) axis has proven to be necessary for maintaining regular basal physiology and formulating appropriate stress response to various types of perturbations. Cholesterol, as a precursor of all steroid HPA axis hormones, can alter the dynamics of HPA axis. To analyse its particular influence on the HPA axis dynamics we used stoichiometric model of HPA axis activity, and simulate cholesterol perturbations in the form of finite duration pulses, with asymmetrically distributed concentration profile. Our numerical simulations showed that there is a complex, nonlinear dependence between the HPA axis responsiveness and different forms of applied cholesterol concentration pulses, indicating the significance of kinetic modelling, and dynamical systems theory for the understanding of large-scale self-regulatory, and homeostatic processes within this neuroendocrine system.


oscillatory processes kinetics of complex reaction systems nonlinear dynamics modelling of cholesterol perturbations hypothalamic-pituitary-adrenal axis statins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Miller and G. Chrousos, in Endocrinology and Metabolism, Ed. by P. Felig and L. Frohman (McGraw–Hill, New York, 2001).Google Scholar
  2. 2.
    S. L. Lightman, R. J. Windle, X.-M. Ma, M. S. Harbuz, N. M. Shanks, M. D. Julian, S. A. Wood, Y. M. Kershaw, and C. D. Ingram, Arch. Physiol. Biochem. 110, 90 (2002).CrossRefGoogle Scholar
  3. 3.
    S. M. Smith and W. W. Vale, Dialogues Clin. Neurosci. 8, 383 (2006).Google Scholar
  4. 4.
    C. Kellendonk, P. Gass, O. Kretz, G. Schütz, and F. Tronche, Brain Res. Bull. 57, 73 (2002).CrossRefGoogle Scholar
  5. 5.
    S. Makino, K. Hashimoto, and P. W. Gold, Pharmacol. Biochem. Behav. 73, 147 (2002).CrossRefGoogle Scholar
  6. 6.
    J. Schulkin, P. W. Gold, and B. S. McEwen, Psychoneuroendocrinol. 23, 219 (1998).CrossRefGoogle Scholar
  7. 7.
    S. L. Lightman and B. L. Conway-Campbell, Nat. Rev. Neurosci. 11, 710 (2010).CrossRefGoogle Scholar
  8. 8.
    L. Djoussé and J. M. Gaziano, Curr. Atheroscler. Rep. 11, 418 (2009).CrossRefGoogle Scholar
  9. 9.
    R. Clarke, C. Frost, R. Collins, P. Appleby, and R. Peto, Brit. Med. J. 314, 112 (1997).CrossRefGoogle Scholar
  10. 10.
    W. H. Howell, D. J. McNamara, M. A. Tosca, B. T. Smith, and J. A. Gaines, Am. J. Clin. Nutr. 65, 1747 (1997).CrossRefGoogle Scholar
  11. 11.
    D. J. McNamara, J. Am. Coll. Nutr. 19, 540S (2000).CrossRefGoogle Scholar
  12. 12.
    R. V Seimon, N. Hostland, S. L. Silveira, A. A. Gibson, and A. Sainsbury, Horm. Mol. Biol. Clin. Investig. 15, 71 (2013).Google Scholar
  13. 13.
    P. A. S. Alphonse and P. J. H. Jones, Lipids 51, 519 (2016).CrossRefGoogle Scholar
  14. 14.
    V. M. Marković, Ž. Čupić, S. Macešic, A. Stanojević, V. Vukojević, and L. Kolar-Anić, Math. Med. Biol. 33, 1 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Jelić, Ž. Čupić, and Lj. Kolar-Anić, Math. Biosci. 197, 173 (2005).CrossRefGoogle Scholar
  16. 16.
    H. S. Seo and M. H. Choi, J. Steroid Biochem. Mol. Biol. 153, 72 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Orth and S. Bellosta, Cholesterol 2012 (2012).Google Scholar
  18. 18.
    C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice–Hall, Englewood Cliffs, NJ, 1971).Google Scholar
  19. 19.
    A. E. Morgan, K. M. Mooney, S. J. Wilkinson, N. A. Pickles, and M. T. McAuley, Ageing Res. Rev. 27, 108 (2016).CrossRefGoogle Scholar
  20. 20.
    V. M. Marković, Ž. Čupić, V. Vukojević, and Lj. Kolar-Anić, Endocr. J. 58, 889 (2011).CrossRefGoogle Scholar
  21. 21.
    J. T. Davies, S. F. Delfino, C. E. Feinberg, M. F. Johnson, V. L. Nappi, J. T. Olinger, A. P. Schwab, and H. I. Swanson, Lipid Insights 9, 13 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. Stanojević
    • 1
  • V. M. Marković
    • 1
  • Ž. Čupić
    • 2
  • V. Vukojević
    • 3
  • L. Kolar-Anić
    • 1
    • 2
  1. 1.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical EngineeringUniversity of BelgradeBelgradeSerbia
  3. 3.Karolinska Institutet, Department of Clinical NeuroscienceStockholmSweden

Personalised recommendations