Skip to main content
Log in

Molecular structure and spectra of titanium and vanadium trifluorides: Complete basis set CCSD(T) study

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Quantum chemical study on TiF3 and VF3 molecules was carried out using the CCSD(T) coupled cluster method using the triple-, quadruple-, and quintuple-zeta basis set and an extrapolation to the complete basis set limit. The methods of multireference configuration interaction MRCISD+Q and perturbation theory MCQDPT2 were used also. The symmetry of the ground electronic state was determined: 2 A1 and 3 E″ in TiF3 and VF3, respectively. The adiabatic excitation energies were evaluated: AEE(TiF3, \(\tilde A^2 E'' \leftarrow \tilde X^2 A'_1 \)) = 5000 cm−1, AEE(VF3, \(\tilde A^3 A'_2 \leftarrow \tilde X^3 E''\)) = 1000 cm−1. The Jahn-Teller effect in \(\tilde A^2 E''\) state of TiF3 and \(\tilde X^3 E''\) state of VF3 was investigated. The computed Jahn-Teller stabilization energy D 3h C 2v amounts to 555 and 292 cm−1, respectively. The spin-orbit coupling effect on the VF3 molecular structure and spectrum of electronic states is shown to be quite significant. The calculated vibrational frequencies of TiF3 are in excellent agreement with IR spectroscopy data. The atomization enthalpies were evaluated: Δat H pO298 = 430 kcal/mol (TiF3), 393 kcal/mol (VF3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Solomonik, J. F. Stanton, and J. E. Boggs, J. Chem. Phys. 128, 244104 (2008).

    Article  Google Scholar 

  2. V. G. Solomonik and A. A. Mukhanov, J. Struct. Chem. 53, 28 (2012).

    Article  CAS  Google Scholar 

  3. V. G. Solomonik and A. A. Mukhanov, J. Struct. Chem. 53, 819 (2012).

    Article  CAS  Google Scholar 

  4. J. H. Yates and R. M. Pitzer, J. Chem. Phys. 70, 4049 (1979).

    Article  CAS  Google Scholar 

  5. V. G. Solomonik, V. V. Sliznev, and N. B. Balabanov, Russ. J. Inorg. Chem. 42, 430 (1997).

    Google Scholar 

  6. V. G. Solomonik, J. E. Boggs, and J. F. Stanton, J. Phys. Chem. 105, 838 (1999).

    Article  Google Scholar 

  7. P. Mondal, D. Opalka, L. V. Poluyanov, et al., J. Chem. Phys. 136, 084308 (2012).

    Article  Google Scholar 

  8. H._J. Werner, P. J. Knowles, R. Lindh, et al., MOLPRO, Vers. 2010.1, a package of ab initio programs. http://www.molpro.net

  9. N. B. Balabanov and K. A. Peterson, J. Chem. Phys. 123, 064107 (2005).

    Article  Google Scholar 

  10. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).

    Article  CAS  Google Scholar 

  11. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).

    Article  CAS  Google Scholar 

  12. V. G. Solomonik, J. F. Stanton, and J. E. Boggs, J. Chem. Phys. 122, 094322 (2005).

    Article  Google Scholar 

  13. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  14. T. J. Lee and P. R. Taylor, Int. J. Quant. Chem. Symp. S23, 199 (1989).

    Google Scholar 

  15. W. Jiang, N. J. DeYonker, and A. K. Wilson, J. Chem. Theory Comput. 8, 460 (2012).

    Article  CAS  Google Scholar 

  16. T. C. DeVore and W. Weltner, Jr., J. Am. Chem. Soc. 99, 4700 (1977).

    Article  CAS  Google Scholar 

  17. E. van Lenthe, P. E. S. Wormer, and A. van der Avoird, J. Chem. Phys. 107, 2488 (1997).

    Article  Google Scholar 

  18. J. F. Stanton, J. Gauss, M. E. Harding, et al., CFOUR, a quantum chemical program package. http://www.cfour.de

  19. J. W. Hastie, R. Hauge, and J. L. Margrave, J. Chem. Phys. 51, 2648 (1969).

    Article  CAS  Google Scholar 

  20. I. R. Beattie, P. J. Jones, and N. A. Young, Angew. Chem. 101, 322 (1989).

    Article  CAS  Google Scholar 

  21. V. N. Bukhmarina, A. Yu. Gerasimov, and Yu. B. Predtechenskii, Vibrat. Spectrosc. 4, 91 (1992).

    Article  CAS  Google Scholar 

  22. E. Z. Zasorin, A. A. Ivanov, L. I. Ermolaeva, et al., Russ. J. Phys. Chem. 63, 363 (1989).

    Google Scholar 

  23. C. Blondel, C. Delsart, and F. Goldfarb, J. Phys. B: At. Mol. Opt. Phys. 34, 281 (2001).

    Article  Google Scholar 

  24. J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14(Suppl. 2) (1985).

    Google Scholar 

  25. Yu. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team, NIST Atomic Specta Database, Vers. 3.1.5 (2008); http://physics.nist.gov/asd3

    Google Scholar 

  26. J. M. W. Chase, C. A. Davies, J. J. R. Downey, et al., J. Phys. Chem. Ref. Data, Monograph, 4th ed. (1998), Vol. 9, pp. 1–1952.

    Google Scholar 

  27. N. J. DeYonker, K. A. Peterson, G. Steyl, et al., J. Phys. Chem. A 111, 11269 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Solomonik.

Additional information

Original Russian Text © V.G. Solomonik, A.A. Mukhanov, 2014, published in Zhurnal Fizicheskoi Khimii, 2014, Vol. 88, No. 1, pp. 62–71.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomonik, V.G., Mukhanov, A.A. Molecular structure and spectra of titanium and vanadium trifluorides: Complete basis set CCSD(T) study. Russ. J. Phys. Chem. 88, 85–93 (2014). https://doi.org/10.1134/S0036024414010233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414010233

Keywords

Navigation