Mesostructure of Composite Materials Based on Segmented Poly(Urethane Imide) Containing Ferrite Nanoparticles

Abstract

The mesostructure of segmented poly(urethane imide) containing 4–10 wt % CoFe2O4 or Al3Fe5O12 nanoparticles was experimentally studied by small-angle polarized neutron scattering, which can analyze the nuclear and magnetic subsystems of the obtained composites. The transformation of the domain structure of the magnetic elastomers based on poly(urethane imide) was investigated at various concentrations, chemical compositions, and localizations of ferrite nanoparticles in polymer chains. The dynamics of the change in the segmental mobility of soft blocks during heating of samples was characterized by magnetic–nuclear interference scattering. The experiments detected changes in the supramolecular structure of the multiblock copolymer, which depended on the percentage and type of nanoparticles. The correlation radii were determined in the magnetic subsystem of ferrite nanoparticles embedded in hard aromatic blocks of poly(urethane imide) as nodes of intermolecular crosslinkers and chain extenders. The temperature dependence was analyzed for the intensity of small-angle nuclear scattering by poly(urethane imide) and magnetic elastomers based on it, under the conditions of the transition of soft aliphatic segments from the glassy to the highly elastic state.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    M. R. Aguilar and J. S. Román, Smart Polymers and Their Applications (Woodhead, Cambridge, UK, 2014).

    Google Scholar 

  2. 2

    H. Meng and G. Li, Polym. J. 54, 2199 (2013). https://doi.org/10.1016/j.polymer.2013.02.023

    CAS  Article  Google Scholar 

  3. 3

    V. Q. Nguyen and R. V. Ramanujan, Macromol. Chem. Phys. 211, 618 (2010). https://doi.org/10.1002/macp.200900478

    CAS  Article  Google Scholar 

  4. 4

    G. D. Soto, C. Meiorin, D. Actis, et al., Polym. Test. 65, 360 (2018). https://doi.org/10.1016/j.polymertesting.2017.12.012

    CAS  Article  Google Scholar 

  5. 5

    J.-P. Pelteret and P. Steinmann, Magneto-Active Polymers: Fabrication, Characterization, Modelling and Simulation at the Micro- and Macro-Scale (De Gruyter, Berlin, 2020). https://doi.org/10.1515/9783110418576

  6. 6

    L. Wang, M. Y. Razzaq, T. Rudolph, et al., Mater. Horiz, No. 5, 861 (2018). https://doi.org/10.1039/C8MH00266E

  7. 7

    P. A. Sánchez, E. S. Minina, S. S. Kantorovich, et al., Soft Matter 15, 175 (2019). https://doi.org/10.1039/C8SM01850B

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    M. Heuchel, M. Y. Razzaq, K. Kratz, et al., Polym. J. 65, 215 (2015). https://doi.org/10.1016/j.polymer.2015.03.063

    CAS  Article  Google Scholar 

  9. 9

    R. Elhajjar, C.-T. Law, and A. Pegoretti, Prog. Mater. Sci. 97, 204 (2018). https://doi.org/10.1016/j.pmatsci.2018.02.005

    CAS  Article  Google Scholar 

  10. 10

    V. Q. Nguyen, A. S. Ahmed, and R. V. Ramanujan, Adv. Mater. 24, 4041 (2012). https://doi.org/10.1002/adma.201104994

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Taixiang Liu and Yangguang Xu, Smart and Functional Soft Materials, Ch. 4: Magnetorheological Elastomers: Materials and Applications, Ed. by Xufeng Dong (Intech-Open, 2019). https://doi.org/10.5772/intechopen.85083

  12. 12

    Y. Gao, G. Zhu, S. Xu, et al., Inc. J. Appl. Polym. Sci. 135, 45652 (2018). https://doi.org/10.1002/app.45652

    CAS  Article  Google Scholar 

  13. 13

    S.-Y. Gu, S.-P. Jin, X.-F. Gao, et al., Smart Mater. Struct. 25, 055036 (2016). https://doi.org/10.1088/0964-1726/25/5/055036

    CAS  Article  Google Scholar 

  14. 14

    M. Yoonessi, J. A. Peck, J. L. Bail, et al., ACS Appl. Mater. Interfaces 3, 2686 (2011). https://doi.org/10.1021/am200468t

    CAS  Article  PubMed  Google Scholar 

  15. 15

    V. S. Molchanov, G. V. Stepanov, V. G. Vasiliev, et al., Macromol. Mater. Eng. 299, 1116 (2014). https://doi.org/10.1002/mame.201300458

    CAS  Article  Google Scholar 

  16. 16

    P. V. Melenev, V. N. Kovrov, Yu. L. Raikher, et al., Vychisl. Mekh. Sploshnykh Sred 7, 423 (2014). https://doi.org/10.7242/1999-6691/2014.7.4.40

    Article  Google Scholar 

  17. 17

    K. Han, Y. T. Feng, and D. R. J. Owen, Int. J. Numer. Methods Eng. 84, 1273 (2010). https://doi.org/10.1002/nme.2940

    Article  Google Scholar 

  18. 18

    B. Avci and P. Wriggers, J. Appl. Mech. 79, 010901 (2012). https://doi.org/10.1115/1.4005093

    Article  Google Scholar 

  19. 19

    J. Ravnik and M. Hriberšek, Comput. Mech. 51, 465 (2013). https://doi.org/10.1007/s00466-012-0729-3

    Article  Google Scholar 

  20. 20

    F. Vogel, J.-P. Pelteret, S. Kaessmair, et al., Eur. J. Mech., A: Solids 48, 23 (2014). https://doi.org/10.1016/j.euromechsol.2014.03.007

    Article  Google Scholar 

  21. 21

    M. Roy, P. Tran, T. Dickens, et al., J. Compos. Sci. 4, 1 (2020). https://doi.org/10.3390/jcs4010001

    CAS  Article  Google Scholar 

  22. 22

    O. N. Karpov, M. V. Tomkovich, and E. A. Tugova, Russ. J. Gen. Chem. 88, 2133 (2018). https://doi.org/10.1134/S1070363218100171

    CAS  Article  Google Scholar 

  23. 23

    G. Natta and L. Passerini, Gazz. Chim. Ital. 59, 286 (1929).

    Google Scholar 

  24. 24

    K. Sadhana, Naina S. E. Vinodini, R. Sandhya, et al., Adv. Mater. Lett. 6, 717 (2015). https://doi.org/10.5185/amlett.2015.5874

    CAS  Article  Google Scholar 

  25. 25

    N. Yahya, R. A. H. Masoud, H. Daud, et al., Am. J. Eng. Appl. Sci. 2, 76 (2009).

    Article  Google Scholar 

  26. 26

    A. Yu. Olenin and G. V. Lisichkin, Russ. J. Gen. Chem. 89, 1451 (2019). https://doi.org/10.1134/S1070363219070168

    CAS  Article  Google Scholar 

  27. 27

    V. E. Yudin, A. N. Bugrov, A. L. Didenko, et al., Polym. Sci. Ser. B 56, 859 (2014). https://doi.org/10.1134/S1560090414060165

    CAS  Article  Google Scholar 

  28. 28

    A. N. Bugrov, E. N. Vlasova, M. V. Mokeev, et al., Polym. Sci. Ser. B 54, 486 (2012). https://doi.org/10.1134/S1560090412100041

    CAS  Article  Google Scholar 

  29. 29

    M. P. Sokolova, A. N. Bugrov, M. A. Smirnov, et al., Polymers 10, 1222 (2018). https://doi.org/10.3390/polym10111222

    CAS  Article  Google Scholar 

  30. 30

    I. V. Melnyk, M. Vaclavikova, G. A. Seisenbaeva, et al., in Biocompatible Hybrid Oxide Nanoparticles for Human Health. From Synthesis to Applications. Micro and Nano Technologies, Ch. 10: Synthesis and Study of Multiferroic and Ferroelectric “Core–Shell” Powders for Application in Electronic Devices for Medicine and Ecology (Elsevier, Amsterdam, 2019), p. 183. https://doi.org/10.1016/B978-0-12-815875-3.00010-2

  31. 31

    S. V. Maleev, Phys. Usp. 45, 569 (2002). https://doi.org/10.1070/PU2002v045n06ABEH001017

    CAS  Article  Google Scholar 

  32. 32

    V. V. Runov, D. S. Ilyn, M. K. Runova, et al., JETP Lett. 95, 467 (2012). https://doi.org/10.1134/S0021364012090111

    CAS  Article  Google Scholar 

  33. 33

    V. Reichel, A. Kovács, M. Kumari, et al., Sci. Rep. 7, 454 (2017). https://doi.org/10.1038/srep45484

    CAS  Article  Google Scholar 

  34. 34

    Y.-S. Sun, U.-S. Jeng, Y.-S. Huang, et al., Physica B 385–386, 650 (2006). https://doi.org/10.1016/j.physb.2006.06.093

    CAS  Article  Google Scholar 

  35. 35

    F. Deng, Y. Zhang, X. Li, et al., Polym. Compos. 40, 328 (2017). https://doi.org/10.1002/pc.24654

    CAS  Article  Google Scholar 

  36. 36

    C.-H. Wu, S.-M. Shau, S.-C. Liu, et al., RSC Adv. 5, 16897 (2015). https://doi.org/10.1039/c4ra14277b

    CAS  Article  Google Scholar 

  37. 37

    S. M. Cruz and J. C. Viana, Macromol. Mater. Eng. 300, 1153 (2015). https://doi.org/10.1002/mame.201500188

    CAS  Article  Google Scholar 

  38. 38

    H. Behniafar, M. Alimohammadi, and Kh. Malekshahinezhad, Prog. Org. Coat. 88, 150 (2015). https://doi.org/10.1016/j.porgcoat.2015.06.030

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank E. M. Ivan’kova (Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia) and D. A. Kirilenko (Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia) for performing electron microscopy studies of powders of CoFe2O4 and Al3Fe5O12 nanoparticles. We are also grateful to the Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics; Research Park; St. Petersburg State University, St. Petersburg; Russia, for measuring the magnetic characteristics of the ferrites by SQUID magnetometry.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Bugrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Runov, V.V., Bugrov, A.N., Smyslov, R.Y. et al. Mesostructure of Composite Materials Based on Segmented Poly(Urethane Imide) Containing Ferrite Nanoparticles. Russ. J. Inorg. Chem. 66, 225–236 (2021). https://doi.org/10.1134/S0036023621020170

Download citation

Keywords:

  • small-angle polarized neutron scattering
  • multiblock copolymers
  • domain structure
  • magnetic elastomers