Abstract
The mesostructure of segmented poly(urethane imide) containing 4–10 wt % CoFe2O4 or Al3Fe5O12 nanoparticles was experimentally studied by small-angle polarized neutron scattering, which can analyze the nuclear and magnetic subsystems of the obtained composites. The transformation of the domain structure of the magnetic elastomers based on poly(urethane imide) was investigated at various concentrations, chemical compositions, and localizations of ferrite nanoparticles in polymer chains. The dynamics of the change in the segmental mobility of soft blocks during heating of samples was characterized by magnetic–nuclear interference scattering. The experiments detected changes in the supramolecular structure of the multiblock copolymer, which depended on the percentage and type of nanoparticles. The correlation radii were determined in the magnetic subsystem of ferrite nanoparticles embedded in hard aromatic blocks of poly(urethane imide) as nodes of intermolecular crosslinkers and chain extenders. The temperature dependence was analyzed for the intensity of small-angle nuclear scattering by poly(urethane imide) and magnetic elastomers based on it, under the conditions of the transition of soft aliphatic segments from the glassy to the highly elastic state.
This is a preview of subscription content, access via your institution.









REFERENCES
- 1
M. R. Aguilar and J. S. Román, Smart Polymers and Their Applications (Woodhead, Cambridge, UK, 2014).
- 2
H. Meng and G. Li, Polym. J. 54, 2199 (2013). https://doi.org/10.1016/j.polymer.2013.02.023
- 3
V. Q. Nguyen and R. V. Ramanujan, Macromol. Chem. Phys. 211, 618 (2010). https://doi.org/10.1002/macp.200900478
- 4
G. D. Soto, C. Meiorin, D. Actis, et al., Polym. Test. 65, 360 (2018). https://doi.org/10.1016/j.polymertesting.2017.12.012
- 5
J.-P. Pelteret and P. Steinmann, Magneto-Active Polymers: Fabrication, Characterization, Modelling and Simulation at the Micro- and Macro-Scale (De Gruyter, Berlin, 2020). https://doi.org/10.1515/9783110418576
- 6
L. Wang, M. Y. Razzaq, T. Rudolph, et al., Mater. Horiz, No. 5, 861 (2018). https://doi.org/10.1039/C8MH00266E
- 7
P. A. Sánchez, E. S. Minina, S. S. Kantorovich, et al., Soft Matter 15, 175 (2019). https://doi.org/10.1039/C8SM01850B
- 8
M. Heuchel, M. Y. Razzaq, K. Kratz, et al., Polym. J. 65, 215 (2015). https://doi.org/10.1016/j.polymer.2015.03.063
- 9
R. Elhajjar, C.-T. Law, and A. Pegoretti, Prog. Mater. Sci. 97, 204 (2018). https://doi.org/10.1016/j.pmatsci.2018.02.005
- 10
V. Q. Nguyen, A. S. Ahmed, and R. V. Ramanujan, Adv. Mater. 24, 4041 (2012). https://doi.org/10.1002/adma.201104994
- 11
Taixiang Liu and Yangguang Xu, Smart and Functional Soft Materials, Ch. 4: Magnetorheological Elastomers: Materials and Applications, Ed. by Xufeng Dong (Intech-Open, 2019). https://doi.org/10.5772/intechopen.85083
- 12
Y. Gao, G. Zhu, S. Xu, et al., Inc. J. Appl. Polym. Sci. 135, 45652 (2018). https://doi.org/10.1002/app.45652
- 13
S.-Y. Gu, S.-P. Jin, X.-F. Gao, et al., Smart Mater. Struct. 25, 055036 (2016). https://doi.org/10.1088/0964-1726/25/5/055036
- 14
M. Yoonessi, J. A. Peck, J. L. Bail, et al., ACS Appl. Mater. Interfaces 3, 2686 (2011). https://doi.org/10.1021/am200468t
- 15
V. S. Molchanov, G. V. Stepanov, V. G. Vasiliev, et al., Macromol. Mater. Eng. 299, 1116 (2014). https://doi.org/10.1002/mame.201300458
- 16
P. V. Melenev, V. N. Kovrov, Yu. L. Raikher, et al., Vychisl. Mekh. Sploshnykh Sred 7, 423 (2014). https://doi.org/10.7242/1999-6691/2014.7.4.40
- 17
K. Han, Y. T. Feng, and D. R. J. Owen, Int. J. Numer. Methods Eng. 84, 1273 (2010). https://doi.org/10.1002/nme.2940
- 18
B. Avci and P. Wriggers, J. Appl. Mech. 79, 010901 (2012). https://doi.org/10.1115/1.4005093
- 19
J. Ravnik and M. Hriberšek, Comput. Mech. 51, 465 (2013). https://doi.org/10.1007/s00466-012-0729-3
- 20
F. Vogel, J.-P. Pelteret, S. Kaessmair, et al., Eur. J. Mech., A: Solids 48, 23 (2014). https://doi.org/10.1016/j.euromechsol.2014.03.007
- 21
M. Roy, P. Tran, T. Dickens, et al., J. Compos. Sci. 4, 1 (2020). https://doi.org/10.3390/jcs4010001
- 22
O. N. Karpov, M. V. Tomkovich, and E. A. Tugova, Russ. J. Gen. Chem. 88, 2133 (2018). https://doi.org/10.1134/S1070363218100171
- 23
G. Natta and L. Passerini, Gazz. Chim. Ital. 59, 286 (1929).
- 24
K. Sadhana, Naina S. E. Vinodini, R. Sandhya, et al., Adv. Mater. Lett. 6, 717 (2015). https://doi.org/10.5185/amlett.2015.5874
- 25
N. Yahya, R. A. H. Masoud, H. Daud, et al., Am. J. Eng. Appl. Sci. 2, 76 (2009).
- 26
A. Yu. Olenin and G. V. Lisichkin, Russ. J. Gen. Chem. 89, 1451 (2019). https://doi.org/10.1134/S1070363219070168
- 27
V. E. Yudin, A. N. Bugrov, A. L. Didenko, et al., Polym. Sci. Ser. B 56, 859 (2014). https://doi.org/10.1134/S1560090414060165
- 28
A. N. Bugrov, E. N. Vlasova, M. V. Mokeev, et al., Polym. Sci. Ser. B 54, 486 (2012). https://doi.org/10.1134/S1560090412100041
- 29
M. P. Sokolova, A. N. Bugrov, M. A. Smirnov, et al., Polymers 10, 1222 (2018). https://doi.org/10.3390/polym10111222
- 30
I. V. Melnyk, M. Vaclavikova, G. A. Seisenbaeva, et al., in Biocompatible Hybrid Oxide Nanoparticles for Human Health. From Synthesis to Applications. Micro and Nano Technologies, Ch. 10: Synthesis and Study of Multiferroic and Ferroelectric “Core–Shell” Powders for Application in Electronic Devices for Medicine and Ecology (Elsevier, Amsterdam, 2019), p. 183. https://doi.org/10.1016/B978-0-12-815875-3.00010-2
- 31
S. V. Maleev, Phys. Usp. 45, 569 (2002). https://doi.org/10.1070/PU2002v045n06ABEH001017
- 32
V. V. Runov, D. S. Ilyn, M. K. Runova, et al., JETP Lett. 95, 467 (2012). https://doi.org/10.1134/S0021364012090111
- 33
V. Reichel, A. Kovács, M. Kumari, et al., Sci. Rep. 7, 454 (2017). https://doi.org/10.1038/srep45484
- 34
Y.-S. Sun, U.-S. Jeng, Y.-S. Huang, et al., Physica B 385–386, 650 (2006). https://doi.org/10.1016/j.physb.2006.06.093
- 35
F. Deng, Y. Zhang, X. Li, et al., Polym. Compos. 40, 328 (2017). https://doi.org/10.1002/pc.24654
- 36
C.-H. Wu, S.-M. Shau, S.-C. Liu, et al., RSC Adv. 5, 16897 (2015). https://doi.org/10.1039/c4ra14277b
- 37
S. M. Cruz and J. C. Viana, Macromol. Mater. Eng. 300, 1153 (2015). https://doi.org/10.1002/mame.201500188
- 38
H. Behniafar, M. Alimohammadi, and Kh. Malekshahinezhad, Prog. Org. Coat. 88, 150 (2015). https://doi.org/10.1016/j.porgcoat.2015.06.030
ACKNOWLEDGMENTS
We thank E. M. Ivan’kova (Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia) and D. A. Kirilenko (Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia) for performing electron microscopy studies of powders of CoFe2O4 and Al3Fe5O12 nanoparticles. We are also grateful to the Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics; Research Park; St. Petersburg State University, St. Petersburg; Russia, for measuring the magnetic characteristics of the ferrites by SQUID magnetometry.
Author information
Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by V. Glyanchenko
Supplementary Information
Rights and permissions
About this article
Cite this article
Runov, V.V., Bugrov, A.N., Smyslov, R.Y. et al. Mesostructure of Composite Materials Based on Segmented Poly(Urethane Imide) Containing Ferrite Nanoparticles. Russ. J. Inorg. Chem. 66, 225–236 (2021). https://doi.org/10.1134/S0036023621020170
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords:
- small-angle polarized neutron scattering
- multiblock copolymers
- domain structure
- magnetic elastomers