Mesostructure of Composite Materials Based on Segmented Poly(Urethane Imide) Containing Ferrite Nanoparticles


The mesostructure of segmented poly(urethane imide) containing 4–10 wt % CoFe2O4 or Al3Fe5O12 nanoparticles was experimentally studied by small-angle polarized neutron scattering, which can analyze the nuclear and magnetic subsystems of the obtained composites. The transformation of the domain structure of the magnetic elastomers based on poly(urethane imide) was investigated at various concentrations, chemical compositions, and localizations of ferrite nanoparticles in polymer chains. The dynamics of the change in the segmental mobility of soft blocks during heating of samples was characterized by magnetic–nuclear interference scattering. The experiments detected changes in the supramolecular structure of the multiblock copolymer, which depended on the percentage and type of nanoparticles. The correlation radii were determined in the magnetic subsystem of ferrite nanoparticles embedded in hard aromatic blocks of poly(urethane imide) as nodes of intermolecular crosslinkers and chain extenders. The temperature dependence was analyzed for the intensity of small-angle nuclear scattering by poly(urethane imide) and magnetic elastomers based on it, under the conditions of the transition of soft aliphatic segments from the glassy to the highly elastic state.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. 1

    M. R. Aguilar and J. S. Román, Smart Polymers and Their Applications (Woodhead, Cambridge, UK, 2014).

    Google Scholar 

  2. 2

    H. Meng and G. Li, Polym. J. 54, 2199 (2013).

    CAS  Article  Google Scholar 

  3. 3

    V. Q. Nguyen and R. V. Ramanujan, Macromol. Chem. Phys. 211, 618 (2010).

    CAS  Article  Google Scholar 

  4. 4

    G. D. Soto, C. Meiorin, D. Actis, et al., Polym. Test. 65, 360 (2018).

    CAS  Article  Google Scholar 

  5. 5

    J.-P. Pelteret and P. Steinmann, Magneto-Active Polymers: Fabrication, Characterization, Modelling and Simulation at the Micro- and Macro-Scale (De Gruyter, Berlin, 2020).

  6. 6

    L. Wang, M. Y. Razzaq, T. Rudolph, et al., Mater. Horiz, No. 5, 861 (2018).

  7. 7

    P. A. Sánchez, E. S. Minina, S. S. Kantorovich, et al., Soft Matter 15, 175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    M. Heuchel, M. Y. Razzaq, K. Kratz, et al., Polym. J. 65, 215 (2015).

    CAS  Article  Google Scholar 

  9. 9

    R. Elhajjar, C.-T. Law, and A. Pegoretti, Prog. Mater. Sci. 97, 204 (2018).

    CAS  Article  Google Scholar 

  10. 10

    V. Q. Nguyen, A. S. Ahmed, and R. V. Ramanujan, Adv. Mater. 24, 4041 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Taixiang Liu and Yangguang Xu, Smart and Functional Soft Materials, Ch. 4: Magnetorheological Elastomers: Materials and Applications, Ed. by Xufeng Dong (Intech-Open, 2019).

  12. 12

    Y. Gao, G. Zhu, S. Xu, et al., Inc. J. Appl. Polym. Sci. 135, 45652 (2018).

    CAS  Article  Google Scholar 

  13. 13

    S.-Y. Gu, S.-P. Jin, X.-F. Gao, et al., Smart Mater. Struct. 25, 055036 (2016).

    CAS  Article  Google Scholar 

  14. 14

    M. Yoonessi, J. A. Peck, J. L. Bail, et al., ACS Appl. Mater. Interfaces 3, 2686 (2011).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    V. S. Molchanov, G. V. Stepanov, V. G. Vasiliev, et al., Macromol. Mater. Eng. 299, 1116 (2014).

    CAS  Article  Google Scholar 

  16. 16

    P. V. Melenev, V. N. Kovrov, Yu. L. Raikher, et al., Vychisl. Mekh. Sploshnykh Sred 7, 423 (2014).

    Article  Google Scholar 

  17. 17

    K. Han, Y. T. Feng, and D. R. J. Owen, Int. J. Numer. Methods Eng. 84, 1273 (2010).

    Article  Google Scholar 

  18. 18

    B. Avci and P. Wriggers, J. Appl. Mech. 79, 010901 (2012).

    Article  Google Scholar 

  19. 19

    J. Ravnik and M. Hriberšek, Comput. Mech. 51, 465 (2013).

    Article  Google Scholar 

  20. 20

    F. Vogel, J.-P. Pelteret, S. Kaessmair, et al., Eur. J. Mech., A: Solids 48, 23 (2014).

    Article  Google Scholar 

  21. 21

    M. Roy, P. Tran, T. Dickens, et al., J. Compos. Sci. 4, 1 (2020).

    CAS  Article  Google Scholar 

  22. 22

    O. N. Karpov, M. V. Tomkovich, and E. A. Tugova, Russ. J. Gen. Chem. 88, 2133 (2018).

    CAS  Article  Google Scholar 

  23. 23

    G. Natta and L. Passerini, Gazz. Chim. Ital. 59, 286 (1929).

    Google Scholar 

  24. 24

    K. Sadhana, Naina S. E. Vinodini, R. Sandhya, et al., Adv. Mater. Lett. 6, 717 (2015).

    CAS  Article  Google Scholar 

  25. 25

    N. Yahya, R. A. H. Masoud, H. Daud, et al., Am. J. Eng. Appl. Sci. 2, 76 (2009).

    Article  Google Scholar 

  26. 26

    A. Yu. Olenin and G. V. Lisichkin, Russ. J. Gen. Chem. 89, 1451 (2019).

    CAS  Article  Google Scholar 

  27. 27

    V. E. Yudin, A. N. Bugrov, A. L. Didenko, et al., Polym. Sci. Ser. B 56, 859 (2014).

    CAS  Article  Google Scholar 

  28. 28

    A. N. Bugrov, E. N. Vlasova, M. V. Mokeev, et al., Polym. Sci. Ser. B 54, 486 (2012).

    CAS  Article  Google Scholar 

  29. 29

    M. P. Sokolova, A. N. Bugrov, M. A. Smirnov, et al., Polymers 10, 1222 (2018).

    CAS  Article  Google Scholar 

  30. 30

    I. V. Melnyk, M. Vaclavikova, G. A. Seisenbaeva, et al., in Biocompatible Hybrid Oxide Nanoparticles for Human Health. From Synthesis to Applications. Micro and Nano Technologies, Ch. 10: Synthesis and Study of Multiferroic and Ferroelectric “Core–Shell” Powders for Application in Electronic Devices for Medicine and Ecology (Elsevier, Amsterdam, 2019), p. 183.

  31. 31

    S. V. Maleev, Phys. Usp. 45, 569 (2002).

    CAS  Article  Google Scholar 

  32. 32

    V. V. Runov, D. S. Ilyn, M. K. Runova, et al., JETP Lett. 95, 467 (2012).

    CAS  Article  Google Scholar 

  33. 33

    V. Reichel, A. Kovács, M. Kumari, et al., Sci. Rep. 7, 454 (2017).

    CAS  Article  Google Scholar 

  34. 34

    Y.-S. Sun, U.-S. Jeng, Y.-S. Huang, et al., Physica B 385–386, 650 (2006).

    CAS  Article  Google Scholar 

  35. 35

    F. Deng, Y. Zhang, X. Li, et al., Polym. Compos. 40, 328 (2017).

    CAS  Article  Google Scholar 

  36. 36

    C.-H. Wu, S.-M. Shau, S.-C. Liu, et al., RSC Adv. 5, 16897 (2015).

    CAS  Article  Google Scholar 

  37. 37

    S. M. Cruz and J. C. Viana, Macromol. Mater. Eng. 300, 1153 (2015).

    CAS  Article  Google Scholar 

  38. 38

    H. Behniafar, M. Alimohammadi, and Kh. Malekshahinezhad, Prog. Org. Coat. 88, 150 (2015).

    CAS  Article  Google Scholar 

Download references


We thank E. M. Ivan’kova (Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia) and D. A. Kirilenko (Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia) for performing electron microscopy studies of powders of CoFe2O4 and Al3Fe5O12 nanoparticles. We are also grateful to the Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics; Research Park; St. Petersburg State University, St. Petersburg; Russia, for measuring the magnetic characteristics of the ferrites by SQUID magnetometry.

Author information



Corresponding author

Correspondence to A. N. Bugrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Runov, V.V., Bugrov, A.N., Smyslov, R.Y. et al. Mesostructure of Composite Materials Based on Segmented Poly(Urethane Imide) Containing Ferrite Nanoparticles. Russ. J. Inorg. Chem. 66, 225–236 (2021).

Download citation


  • small-angle polarized neutron scattering
  • multiblock copolymers
  • domain structure
  • magnetic elastomers