Chemical Modification of Phase Change Memory Materials Based on Complex Chalcogenides

Abstract

Chemical modification of amorphous thin films of phase change memory materials for optimizing the functional characteristics of these materials were considered by the example of the chalcogenide compound Ge2Sb2Te5. The doping elements were bismuth and tin. The films were produced by vacuum thermal deposition and magnetron sputtering with subsequent ion implantation of a dopant. Integrated studies of the modified thin films, which includes structural, optical, electrical, and thermal measurements, determined that the optimization of the functional properties of the materials for phase change memory devices is a multifactor process based on the identification of the basic correlations “composition–short-range order structure–property.”

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    B. T. Kolomiets and N. A. Goryunova, Zh. Teor. Fiz. 25, 984 (1955).

    CAS  Google Scholar 

  2. 2

    B. T. Kolomiets and N. A. Goryunova, Zh. Teor. Fiz. 25, 2069 (1955).

    Google Scholar 

  3. 3

    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).

    Google Scholar 

  4. 4

    A. Feltz, Amorphe und glasartige anorganische Festkörper (Akademie, Berlin, 1983).

    Google Scholar 

  5. 5

    S. A. Dembovskii and E. A. Chechetkina, Glass Formation (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  6. 6

    M. F. Churbanov, V. S. Shiryaev, S. V. Smetanin, et al., Neorg. Mater. 37, 1389 (2001).

    Google Scholar 

  7. 7

    V. A. Twanddell, W. C. Lacourse, and J. D. Mackenzie, J. Non-Cryst. Solids 8–10, 831 (1972).

    Article  Google Scholar 

  8. 8

    A. B. Seddon, D. Furniss, M. S. Iovu, et al., J. Non-Cryst. Solids 326–327, 278 (2003).

    Google Scholar 

  9. 9

    S. R. Ovshinsky, in Proceedings of the 7th International Conference on Amorphous and Liquid Semiconductors, Edinburgh, Scotland, June 27–July 1, 1977, p. 519.

  10. 10

    V. A. Vasil’ev, Fiz. Khim. Stekla 9, 584 (1983).

    Google Scholar 

  11. 11

    D. A. Turnbull and S. G. Bishop, J. Non-Cryst. Solids 213–214, 288 (1997).

    Article  Google Scholar 

  12. 12

    S. R. Elliott and A. T. Steel, Phys. Rev. Lett. 57, 1316 (1986). https://doi.org/10.1103/PhysRevLett.57.1316

    CAS  Article  PubMed  Google Scholar 

  13. 13

    S. Okano and M. Suzuki, Jpn. J. Appl. Phys. 20, 1635 (1981).

    CAS  Article  Google Scholar 

  14. 14

    A. D. Pearson, W. R. Northover, J. F. Dewald, and Jr. W. Peck, Chemical, Physical, and Electrical Properties of Some Unusual Inorganic Glasses, in Advances in Glass Technology: Technical Papers of the VI International Congress on Glass, Washington, D.C., U.S.A., July 8–14, 1962 (Plenum, New York, 1962), pp. 357–365.

  15. 15

    B. T. Kolomiets and E. A. Lebedev, Radiotekh. Elektron. 8, 2097 (1963).

    Google Scholar 

  16. 16

    Phase Change Materials: Science and Applications, Ed. by S. Raoux and M. Wuttig, (Springer, New York, 2009).

    Google Scholar 

  17. 17

    Phase Change Memory: Device Physics, Reliability and Applications, Ed. by A. Pigozzo (Springer, New York, 2018).

    Google Scholar 

  18. 18

    M. Wuttig, H. Bhaskaran, and T. Taubner, Nat. Photonics 11, 465 (2017).

    CAS  Article  Google Scholar 

  19. 19

    N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira, J. Appl. Phys. 69, 2849 (1991).

    CAS  Article  Google Scholar 

  20. 20

    N. Yamada, MRS Bull. 21 (9), 48 (1996).

    CAS  Article  Google Scholar 

  21. 21

    M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    CAS  Article  Google Scholar 

  22. 22

    N. Raeis-Hosseini and J. Rho, Materials 10, 1046 (2017). https://doi.org/10.3390/ma10091046

    CAS  Article  PubMed Central  Google Scholar 

  23. 23

    Y. Qu, Q. Li, L. Cai, et al., Light Sci. Appl. 27, 26 (2018). https://doi.org/10.1038/s41377-018-0038-5

    CAS  Article  Google Scholar 

  24. 24

    A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, et al., Nano Lett. 13, 3470 (2013). https://doi.org/10.1021/nl4006194

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Tseng Ming Lun, Chen Jie, Wu Pin Chieh, et al., Laser Photonics Rev. 10, 1600106 (2016). https://doi.org/10.1002/lpor.201600106

    CAS  Article  Google Scholar 

  26. 26

    N. Kh. Abrikosov and G. T. Danilova-Dobryakova, Izv. Akad. Nauk SSSR, Neorg. Mater. 1, 204 (1965).

    CAS  Google Scholar 

  27. 27

    T. Matsunaga, N. Yamada and Y. Kubota, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 60, 685 (2004).

    Google Scholar 

  28. 28

    CRC Handbook Chemistry and Physics, 90th ed., Ed. by D. R. Lide (CRC, Boca Raton, FL, 2009).

    Google Scholar 

  29. 29

    S. Vikhrov, P. Nagels, and P. Bhat, Recent Developments in Condensed Matter Physics, Vol. 2: Metals, Disordered Systems, Surfaces, and Interfaces (Plenum, New York, 1981), p. 333.

  30. 30

    S. Kozyukhin, A. Sherchenkov, A. Babich, et al., Can. J. Phys. 92, 684 (2014). https://doi.org/10.1139/cjp-2013-0607

    CAS  Article  Google Scholar 

  31. 31

    S. Kozyukhin, M. Veres, H. P. Nguyen, et al., Phys. Procedia 44, 82 (2013). https://doi.org/10.1016/j.phpro.2013.04.011

    CAS  Article  Google Scholar 

  32. 32

    A. Kelly and G. W. Groves, Crystallography and Crystal Defects (Addison-Wesley, Reading. MA, 1970).

    Google Scholar 

  33. 33

    D. Seleznev, A. Kozlov, T. Kulevoy, et al., Rev. Sci. Instrum. 90, 123313 (2019). https://doi.org/10.1063/1.5128561

    CAS  Article  PubMed  Google Scholar 

  34. 34

    H. R. Chandrasekhar, R. G. Humphreys, U. Zwick, and M. Cardona, Phys. Rev. B 15, 2177 (1977).

    CAS  Article  Google Scholar 

  35. 35

    R. Kojima and N. Yamada, Jpn. J. Appl. Phys. 40, 5930 (2001).

    CAS  Article  Google Scholar 

  36. 36

    D. Lencer, M. Salinga, B. Grabowski, et al., Nat. Mater. 7, 972 (2008).

    CAS  Article  Google Scholar 

Download references

Funding

A part of the synthesis of phase change memory materials in this work was performed under a state assignment on basic scientific research for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. The study of the optical characteristics and morphology of the surface of thin films in this work was supported by the Russian Foundation for Basic Research (project no. 20-03-00379).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Kozyukhin.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kozyukhin, S.A. Chemical Modification of Phase Change Memory Materials Based on Complex Chalcogenides. Russ. J. Inorg. Chem. 66, 281–287 (2021). https://doi.org/10.1134/S0036023621020108

Download citation

Keywords:

  • chalcogenide compounds
  • thin films
  • crystallization
  • doping