NMR Spectroscopy—A Versatile Tool for Studying the Structure and Magnetic Properties of Paramagnetic Lanthanide Complexes in Solutions (Review)

Abstract

Coordination compounds of lanthanides attract increasing attention of researchers due to their unique physical and chemical properties, including interesting optical and magnetic behavior. Fine tuning of properties of functional materials based on them is possible by controlling the structure of complexes. This review describes the approach of applying NMR spectroscopy to solve the challenging problem of identification of paramagnetic lanthanide complexes, as well as to establish a correlation between the structure of the coordination sphere of lanthanide ions and the magnetic characteristics of the complexes. It has been shown how the analysis of lanthanide-induced shifts (LIS) and lanthanide-induced relaxation (LIR) in series of isostructural compounds contributes to the identification of spectral–structural correlations, which, in combination with X-ray diffraction and quantum-chemical data, make it possible not only to establish the structure of the compound in solution, but also to perform a primary assessment of the possibility of using lanthanides complexes as single molecule magnets.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. 1

    A. C. Harnden, D. Parker, and N. J. Rogers, Coord. Chem. Rev. 383, 30 (2019). https://doi.org/10.1016/j.ccr.2018.12.012

    CAS  Article  Google Scholar 

  2. 2

    K. Staszak, K. Wieszczycka, V. Marturano, et al., Coord. Chem. Rev. 397, 76 (2019). https://doi.org/10.1016/j.ccr.2019.06.017

    CAS  Article  Google Scholar 

  3. 3

    M. Kaczmarek, J. Lumin. 222, 117174 (2020). https://doi.org/10.1016/j.jlumin.2020.117174

    CAS  Article  Google Scholar 

  4. 4

    R. R. Zairov, A. V. Yagodin, M. Khrizanforov, et al., J. Nanoparticle Res. 21, 12 (2019). https://doi.org/10.1007/s11051-018-4455-4

    CAS  Article  Google Scholar 

  5. 5

    Y. Ning, M. Zhu, and J.-L. Zhang, Coord. Chem. Rev. 399, 213028 (2019). https://doi.org/10.1016/j.ccr.2019.213028

    CAS  Article  Google Scholar 

  6. 6

    H. Wang, B. W. Wang, Y. Bian, et al., Coord. Chem. Rev. 306, 195 (2016). https://doi.org/10.1016/j.ccr.2015.07.004

    CAS  Article  Google Scholar 

  7. 7

    O. Cador, B. Le Guennic, and F. Pointillart, Inorg. Chem. Front. 6, 3398 (2019). https://doi.org/10.1039/c9qi00875f

    CAS  Article  Google Scholar 

  8. 8

    Y. Lan, S. Klyatskaya, and M. Ruben, in Lanthanides and Actinides in Molecular Magnetism, Ed. by R. A. Layfield and M. Murugesu (Wiley-VCH, Weinheim, Germany, 2015), ch. 8, p. 223. https://doi.org/10.1002/9783527673476.ch8

  9. 9

    K. L. M. Harriman, D. Errulat, and M. Murugesu, Trends Chem. 1, 425 (2019). https://doi.org/10.1016/j.trechm.2019.04.005

    CAS  Article  Google Scholar 

  10. 10

    D. M. Lyubov, A. O. Tolpygin, and A. A. Trifonov, Coord. Chem. Rev. 392, 83 (2019). https://doi.org/10.1016/j.ccr.2019.04.013

    CAS  Article  Google Scholar 

  11. 11

    J. E. Bates and J. W. Ziller, et al., J. Am. Chem. Soc. 135, 9857 (2013). https://doi.org/10.1021/ja403753j

    CAS  Article  PubMed  Google Scholar 

  12. 12

    I. L. Fedushkin, O. V. Maslova, A. G. Morozov, et al., Angew. Chem., Int. Ed. Engl. 51, 10584 (2012). https://doi.org/10.1002/anie.201204452

    CAS  Article  Google Scholar 

  13. 13

    A. V. Shokurov, D. S. Kutsybala, A. G. Martynov, et al., Langmuir 36, 1423 (2020). https://doi.org/10.1021/acs.langmuir.9b03403

    CAS  Article  PubMed  Google Scholar 

  14. 14

    A. M. Kaczmarek and P. Van Der Voort, Materials 13, 566 (2020). https://doi.org/10.3390/ma13030566

    CAS  Article  PubMed Central  Google Scholar 

  15. 15

    A. D. Yapryntsev, A. E. Baranchikov, and V. K. Ivanov, Russ. Chem. Rev. 89, 629 (2020). https://doi.org/10.1070/RCR4920

    CAS  Article  Google Scholar 

  16. 16

    K. E. Yorov, S. Y. Kottsov, A. E. Baranchikov, et al., J. Sol-Gel Sci. Technol. 92, 304 (2019). https://doi.org/10.1007/s10971-019-04958-9

    CAS  Article  Google Scholar 

  17. 17

    A. Yapryntsev, B. Abdusatorov, I. Yakushev, et al., Dalton Trans. 48, 6111 (2019). https://doi.org/10.1039/C9DT00390H

    CAS  Article  PubMed  Google Scholar 

  18. 18

    A. D. Yapryntsev, A. E. Baranchikov, L. S. Skogareva, et al., CrystEngComm 17, 2667 (2015). https://doi.org/10.1039/C4CE02303J

    CAS  Article  Google Scholar 

  19. 19

    Y. Xiang, X. -F. Yu, D. -F. He, et al., Adv. Funct. Mater. 21, 4388 (2011). https://doi.org/10.1002/adfm.201101808

    CAS  Article  Google Scholar 

  20. 20

    A. D. Yapryntsev, A. Y. Bykov, A. E. Baranchikov, et al., Inorg. Chem. 56, 3421 (2017). https://doi.org/10.1021/acs.inorgchem.6b02948

    CAS  Article  PubMed  Google Scholar 

  21. 21

    F. Gándara, E. G. Puebla, M. Iglesias, et al., Chem. Mater. 21, 655 (2009). https://doi.org/10.1021/cm8029517

    CAS  Article  Google Scholar 

  22. 22

    J. Demel, P. Kubat, F. Millange, et al., Inorg. Chem. 52, 2779 (2013). https://doi.org/10.1021/ic400182u

    CAS  Article  PubMed  Google Scholar 

  23. 23

    X. Wang, W. Chen, and Y.-F. Song, Eur. J. Inorg. Chem. 2014, 2779 (2014). https://doi.org/10.1002/ejic.201400122

    CAS  Article  Google Scholar 

  24. 24

    M. R. Sokolov, Y. Y. Enakieva, A. D. Yapryntsev, et al., Adv. Funct. Mater. 30, 2000681 (2020). https://doi.org/10.1002/adfm.202000681

    CAS  Article  Google Scholar 

  25. 25

    T. O. Shekunova, L. A. Lapkina, A. B. Shcherbakov, et al., J. Photochem. Photobiol., A. Chem. 382, 111925 (2019). https://doi.org/10.1016/j.jphotochem.2019.111925

    CAS  Article  Google Scholar 

  26. 26

    L. A. Lapkina, Y. G. Gorbunova, D. O. Gil, et al., J. Porphyr. Phthalocyanines 17, 564 (2013). https://doi.org/10.1142/S1088424613500648

    CAS  Article  Google Scholar 

  27. 27

    M. Hiller, S. Krieg, N. Ishikawa, et al., Inorg. Chem. 56, 15285 (2017). https://doi.org/10.1021/acs.inorgchem.7b02704

    CAS  Article  PubMed  Google Scholar 

  28. 28

    A. Santria, A. Fuyuhiro, T. Fukuda, et al., Dalton Trans. 48, 7685 (2019). https://doi.org/10.1039/C9DT00915A

    CAS  Article  PubMed  Google Scholar 

  29. 29

    D. Joss and D. Haussinger, Prog. Nucl. Magn. Reson. Spectrosc. 114115, 284 (2019). https://doi.org/10.1016/j.pnmrs.2019.08.002

  30. 30

    S. P. Babailov, Prog. Nucl. Magn. Reson. Spectrosc. 52, 1 (2008). https://doi.org/10.1016/j.pnmrs.2007.04.002

    CAS  Article  Google Scholar 

  31. 31

    C. F. G. C. Geraldes, S. Zhang, A. D. Sherry, Inorg. Chim. Acta 357, 381 (2004). https://doi.org/10.1016/j.ica.2003.03.001

  32. 32

    S. P. Babailov, A. G. Coutsolelos, A. Dikiy, et al., Eur. J. Inorg. Chem. 2001, 303 (2001). https://doi.org/10.1002/1099-0682(20011)2001:1<303::AID-EJIC303>3.0.CO;2-Y

    Article  Google Scholar 

  33. 33

    S. P. Babailov, Inorg. Chem. 51, 1427 (2012). https://doi.org/10.1021/ic201662q

    CAS  Article  PubMed  Google Scholar 

  34. 34

    S. P. Babailov, P. A. Stabnikov, E. N. Zapolotsky, et al., Inorg. Chem. 52, 5564 (2013). https://doi.org/10.1021/ic400525r

    CAS  Article  PubMed  Google Scholar 

  35. 35

    K. P. Birin, Y. G. Gorbunova, and A. Y. Tsivadze, Dalton Trans. 40, 11474 (2011). ttps://doi.org/https://doi.org/10.1039/c1dt11231g

  36. 36

    Yu. G. Gorbunova, L. A. Lapkina, A. G. Martynov, et al., Russ. J. Coord. Chem. 30, 245 (2004). https://doi.org/10.1023/B:RUCO.0000022799.63314.fc

    CAS  Article  Google Scholar 

  37. 37

    Y. G. Gorbunova, A. G. Martynov, and A. Y. Tsivadze, in Handbook of Porphyrin Science (World Scientific Publishing, 2012), p. 271. https://doi.org/10.1142/9789814397605_0015 K

  38. 38

    A. G. Martynov, Y. G. Gorbunova, and A. Y. Tsivadze, Russ. J. Inorg. Chem. 59, 1635 (2014). https://doi.org/10.1134/S0036023614140046

    CAS  Article  Google Scholar 

  39. 39

    C. Piguet and C. F. G. C. Geraldes, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, J.-C. G Bünzli., and V. K. Pecharsky (Elsevier Science, 2003), vol. 33, ch. 215, p. 353. https://doi.org/10.1016/S0168-1273(02)33005-8

  40. 40

    R. Golding and M. Halton, Aust. J. Chem. 25, 2577 (1972). https://doi.org/10.1071/CH9722577

    CAS  Article  Google Scholar 

  41. 41

    A. A. A. Pinkerton, M. Rossier, S. Spiliadis, et al., J. Magn. Reson. 64, 420 (1985). https://doi.org/10.1016/0022-2364(85)90104-0

    CAS  Article  Google Scholar 

  42. 42

    B. Bleaney, J. Magn. Reson. 8, 91 (1972). https://doi.org/10.1016/0022-2364(72)90027-3

    CAS  Article  Google Scholar 

  43. 43

    J. A. Peters, J. Huskens, and D. J. Raber, Prog. Nucl. Magn. Reson. Spectrosc. 28, 283 (1996). https://doi.org/10.1016/0079-6565(95)01026-2

    CAS  Article  Google Scholar 

  44. 44

    N. Ishikawa, T. Iino, and Y. Kaizu, J. Phys. Chem. A 107, 7879 (2003). https://doi.org/10.1021/jp034971n

    CAS  Article  Google Scholar 

  45. 45

    D. P. Arnold and J. Jiang, J. Phys. Chem. A 105, 7525 (2001). https://doi.org/10.1021/jp0105847

    CAS  Article  Google Scholar 

  46. 46

    A. G. Martynov and Y. G. Gorbunova, Polyhedron 29, 391 (2010). https://doi.org/10.1016/j.poly.2009.06.009

    CAS  Article  Google Scholar 

  47. 47

    A. G. Martynov, Y. G. Gorbunova, and A. Y. Tsivadze, Dalton Trans. 40, 7165 (2011). https://doi.org/10.1039/c1dt10455a

    CAS  Article  PubMed  Google Scholar 

  48. 48

    K. P. Birin, Y. G. Gorbunova, and A. Y. Tsivadze, Magn. Reson. Chem. 48, 505 (2010). https://doi.org/10.1002/mrc.2612

    CAS  Article  PubMed  Google Scholar 

  49. 49

    M. A. Polovkova, A. G. Martynov, K. P. Birin, et al., Inorg. Chem. 55, 9258 (2016). https://doi.org/10.1021/acs.inorgchem.6b01292

    CAS  Article  PubMed  Google Scholar 

  50. 50

    A. G. Martynov, O. V. Zubareva, Y. G. Gorbunova, et al., Inorg. Chim. Acta 362, 11 (2009). https://doi.org/10.1016/j.ica.2008.01.008

    CAS  Article  Google Scholar 

  51. 51

    A. G. Martynov, O. V. Zubareva, Y. G. Gorbunova, et al., Eur. J. Inorg. Chem, No. 30, 4800 (2007). https://doi.org/10.1002/ejic.200700489

  52. 52

    A. G. Martynov, E. A. Safonova, Yu. G. Gorbunova, et al., Russ. J. Inorg. Chem. 55, 347 (2010). https://doi.org/10.1134/S0036023610030083

    CAS  Article  Google Scholar 

  53. 53

    A. Yu. Tsivadze, A. G. Martynov, M. A. Polovkova, et al., Russ. Chem. Bull. 60, 2258 (2011). https://doi.org/10.1007/s11172-011-0345-y

    CAS  Article  Google Scholar 

  54. 54

    R. J. Holmberg, M. A. Polovkova, A. G. Martynov, et al., Dalton Trans. 45, 9320 (2016). https://doi.org/10.1039/C6DT00777E

    CAS  Article  PubMed  Google Scholar 

  55. 55

    A. G. Martynov, M. A. Polovkova, G. S. Berezhnoy, et al., Inorg. Chem. 59, 9424 (2020). https://doi.org/10.1021/acs.inorgchem.0c01346

  56. 56

    Y. Horii, S. Kishiue, M. Damjanović, et al., Chem.-Eur. J. 24, 4320 (2018). https://doi.org/10.1002/chem.201705378

  57. 57

    A. G. Martynov, E. A. Safonova, A. Y. Tsivadze, et al., Coord. Chem. Rev. 387, 325 (2019). https://doi.org/10.1016/j.ccr.2019.02.004

    CAS  Article  Google Scholar 

  58. 58

    S. Sakaue, A. Fuyuhiro, T. Fukuda, et al., Chem. Commun. 48, 5337 (2012). https://doi.org/10.1039/c2cc31125a

    CAS  Article  Google Scholar 

  59. 59

    K. P. Birin, Y. G. Gorbunova, and A. Y. Tsivadze, Dalton Trans. 40, 11539 (2011). https://doi.org/10.1039/c1dt11141h

    CAS  Article  PubMed  Google Scholar 

  60. 60

    K. P. Birin, Y. G. Gorbunova, and A. Y. Tsivadze, Dalton Trans., 23 (2012). https://doi.org/10.1039/c2dt30841j

  61. 61

    K. P. Birin, A. I. Poddubnaya, Y. G. Gorbunova, et al., Macroheterocycles 10, 514 (2017). https://doi.org/10.6060/mhc171258b

    CAS  Article  Google Scholar 

  62. 62

    K. P. Birin, Y. G. Gorbunova, A. Y. Tsivadze, et al., J. Porphyr. Phthalocyanines 13, 283 (2009). https://doi.org/10.1142/S1088424609000358

    CAS  Article  Google Scholar 

  63. 63

    K. P. Birin, K. A. Kamarova, Y. G. Gorbunova, et al., Prot. Met. 49, 173 (2013). https://doi.org/10.1134/S2070205113020032

    CAS  Article  Google Scholar 

  64. 64

    X. Sun, R. Li, D. Wang, et al., Eur. J. Inorg. Chem., No. 19, 3806 (2004). https://doi.org/10.1002/ejic.200400289

  65. 65

    N. Ishikawa, T. Iino, and Y. Kaizu, J. Am. Chem. Soc. 124, 11440 (2002). https://doi.org/10.1021/ja027119n

    CAS  Article  PubMed  Google Scholar 

  66. 66

    K. Katoh, T. Kajiwara, M. Nakano, et al., Chem.-Eur. J. 17, 117 (2011). https://doi.org/10.1002/chem.201002026

    CAS  Article  PubMed  Google Scholar 

  67. 67

    K. Katoh, B. K. Breedlove, and M. Yamashita, Chem. Sci. 7, 4329 (2016). https://doi.org/10.1039/C5SC04669F

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    T. Morita, M. Damjanovic, K. Katoh, et al., J. Am. Chem. Soc. 140, 2995 (2018). https://doi.org/10.1021/jacs.7b12667

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-63-46026).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Gorbunova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, Y.G., Martynov, A.G., Birin, K.P. et al. NMR Spectroscopy—A Versatile Tool for Studying the Structure and Magnetic Properties of Paramagnetic Lanthanide Complexes in Solutions (Review). Russ. J. Inorg. Chem. 66, 202–216 (2021). https://doi.org/10.1134/S0036023621020091

Download citation

Keywords:

  • lanthanide-induced shift
  • lanthanide-induced relaxation
  • phthalocyanines
  • porphyrins
  • spectral–structural correlations
  • magnetic materials