Abstract
Coordination compounds of lanthanides attract increasing attention of researchers due to their unique physical and chemical properties, including interesting optical and magnetic behavior. Fine tuning of properties of functional materials based on them is possible by controlling the structure of complexes. This review describes the approach of applying NMR spectroscopy to solve the challenging problem of identification of paramagnetic lanthanide complexes, as well as to establish a correlation between the structure of the coordination sphere of lanthanide ions and the magnetic characteristics of the complexes. It has been shown how the analysis of lanthanide-induced shifts (LIS) and lanthanide-induced relaxation (LIR) in series of isostructural compounds contributes to the identification of spectral–structural correlations, which, in combination with X-ray diffraction and quantum-chemical data, make it possible not only to establish the structure of the compound in solution, but also to perform a primary assessment of the possibility of using lanthanides complexes as single molecule magnets.
This is a preview of subscription content, access via your institution.













REFERENCES
- 1
A. C. Harnden, D. Parker, and N. J. Rogers, Coord. Chem. Rev. 383, 30 (2019). https://doi.org/10.1016/j.ccr.2018.12.012
- 2
K. Staszak, K. Wieszczycka, V. Marturano, et al., Coord. Chem. Rev. 397, 76 (2019). https://doi.org/10.1016/j.ccr.2019.06.017
- 3
M. Kaczmarek, J. Lumin. 222, 117174 (2020). https://doi.org/10.1016/j.jlumin.2020.117174
- 4
R. R. Zairov, A. V. Yagodin, M. Khrizanforov, et al., J. Nanoparticle Res. 21, 12 (2019). https://doi.org/10.1007/s11051-018-4455-4
- 5
Y. Ning, M. Zhu, and J.-L. Zhang, Coord. Chem. Rev. 399, 213028 (2019). https://doi.org/10.1016/j.ccr.2019.213028
- 6
H. Wang, B. W. Wang, Y. Bian, et al., Coord. Chem. Rev. 306, 195 (2016). https://doi.org/10.1016/j.ccr.2015.07.004
- 7
O. Cador, B. Le Guennic, and F. Pointillart, Inorg. Chem. Front. 6, 3398 (2019). https://doi.org/10.1039/c9qi00875f
- 8
Y. Lan, S. Klyatskaya, and M. Ruben, in Lanthanides and Actinides in Molecular Magnetism, Ed. by R. A. Layfield and M. Murugesu (Wiley-VCH, Weinheim, Germany, 2015), ch. 8, p. 223. https://doi.org/10.1002/9783527673476.ch8
- 9
K. L. M. Harriman, D. Errulat, and M. Murugesu, Trends Chem. 1, 425 (2019). https://doi.org/10.1016/j.trechm.2019.04.005
- 10
D. M. Lyubov, A. O. Tolpygin, and A. A. Trifonov, Coord. Chem. Rev. 392, 83 (2019). https://doi.org/10.1016/j.ccr.2019.04.013
- 11
J. E. Bates and J. W. Ziller, et al., J. Am. Chem. Soc. 135, 9857 (2013). https://doi.org/10.1021/ja403753j
- 12
I. L. Fedushkin, O. V. Maslova, A. G. Morozov, et al., Angew. Chem., Int. Ed. Engl. 51, 10584 (2012). https://doi.org/10.1002/anie.201204452
- 13
A. V. Shokurov, D. S. Kutsybala, A. G. Martynov, et al., Langmuir 36, 1423 (2020). https://doi.org/10.1021/acs.langmuir.9b03403
- 14
A. M. Kaczmarek and P. Van Der Voort, Materials 13, 566 (2020). https://doi.org/10.3390/ma13030566
- 15
A. D. Yapryntsev, A. E. Baranchikov, and V. K. Ivanov, Russ. Chem. Rev. 89, 629 (2020). https://doi.org/10.1070/RCR4920
- 16
K. E. Yorov, S. Y. Kottsov, A. E. Baranchikov, et al., J. Sol-Gel Sci. Technol. 92, 304 (2019). https://doi.org/10.1007/s10971-019-04958-9
- 17
A. Yapryntsev, B. Abdusatorov, I. Yakushev, et al., Dalton Trans. 48, 6111 (2019). https://doi.org/10.1039/C9DT00390H
- 18
A. D. Yapryntsev, A. E. Baranchikov, L. S. Skogareva, et al., CrystEngComm 17, 2667 (2015). https://doi.org/10.1039/C4CE02303J
- 19
Y. Xiang, X. -F. Yu, D. -F. He, et al., Adv. Funct. Mater. 21, 4388 (2011). https://doi.org/10.1002/adfm.201101808
- 20
A. D. Yapryntsev, A. Y. Bykov, A. E. Baranchikov, et al., Inorg. Chem. 56, 3421 (2017). https://doi.org/10.1021/acs.inorgchem.6b02948
- 21
F. Gándara, E. G. Puebla, M. Iglesias, et al., Chem. Mater. 21, 655 (2009). https://doi.org/10.1021/cm8029517
- 22
J. Demel, P. Kubat, F. Millange, et al., Inorg. Chem. 52, 2779 (2013). https://doi.org/10.1021/ic400182u
- 23
X. Wang, W. Chen, and Y.-F. Song, Eur. J. Inorg. Chem. 2014, 2779 (2014). https://doi.org/10.1002/ejic.201400122
- 24
M. R. Sokolov, Y. Y. Enakieva, A. D. Yapryntsev, et al., Adv. Funct. Mater. 30, 2000681 (2020). https://doi.org/10.1002/adfm.202000681
- 25
T. O. Shekunova, L. A. Lapkina, A. B. Shcherbakov, et al., J. Photochem. Photobiol., A. Chem. 382, 111925 (2019). https://doi.org/10.1016/j.jphotochem.2019.111925
- 26
L. A. Lapkina, Y. G. Gorbunova, D. O. Gil, et al., J. Porphyr. Phthalocyanines 17, 564 (2013). https://doi.org/10.1142/S1088424613500648
- 27
M. Hiller, S. Krieg, N. Ishikawa, et al., Inorg. Chem. 56, 15285 (2017). https://doi.org/10.1021/acs.inorgchem.7b02704
- 28
A. Santria, A. Fuyuhiro, T. Fukuda, et al., Dalton Trans. 48, 7685 (2019). https://doi.org/10.1039/C9DT00915A
- 29
D. Joss and D. Haussinger, Prog. Nucl. Magn. Reson. Spectrosc. 114–115, 284 (2019). https://doi.org/10.1016/j.pnmrs.2019.08.002
- 30
S. P. Babailov, Prog. Nucl. Magn. Reson. Spectrosc. 52, 1 (2008). https://doi.org/10.1016/j.pnmrs.2007.04.002
- 31
C. F. G. C. Geraldes, S. Zhang, A. D. Sherry, Inorg. Chim. Acta 357, 381 (2004). https://doi.org/10.1016/j.ica.2003.03.001
- 32
S. P. Babailov, A. G. Coutsolelos, A. Dikiy, et al., Eur. J. Inorg. Chem. 2001, 303 (2001). https://doi.org/10.1002/1099-0682(20011)2001:1<303::AID-EJIC303>3.0.CO;2-Y
- 33
S. P. Babailov, Inorg. Chem. 51, 1427 (2012). https://doi.org/10.1021/ic201662q
- 34
S. P. Babailov, P. A. Stabnikov, E. N. Zapolotsky, et al., Inorg. Chem. 52, 5564 (2013). https://doi.org/10.1021/ic400525r
- 35
K. P. Birin, Y. G. Gorbunova, and A. Y. Tsivadze, Dalton Trans. 40, 11474 (2011). ttps://doi.org/https://doi.org/10.1039/c1dt11231g
- 36
Yu. G. Gorbunova, L. A. Lapkina, A. G. Martynov, et al., Russ. J. Coord. Chem. 30, 245 (2004). https://doi.org/10.1023/B:RUCO.0000022799.63314.fc
- 37
Y. G. Gorbunova, A. G. Martynov, and A. Y. Tsivadze, in Handbook of Porphyrin Science (World Scientific Publishing, 2012), p. 271. https://doi.org/10.1142/9789814397605_0015 K
- 38
A. G. Martynov, Y. G. Gorbunova, and A. Y. Tsivadze, Russ. J. Inorg. Chem. 59, 1635 (2014). https://doi.org/10.1134/S0036023614140046
- 39
C. Piguet and C. F. G. C. Geraldes, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, J.-C. G Bünzli., and V. K. Pecharsky (Elsevier Science, 2003), vol. 33, ch. 215, p. 353. https://doi.org/10.1016/S0168-1273(02)33005-8
- 40
R. Golding and M. Halton, Aust. J. Chem. 25, 2577 (1972). https://doi.org/10.1071/CH9722577
- 41
A. A. A. Pinkerton, M. Rossier, S. Spiliadis, et al., J. Magn. Reson. 64, 420 (1985). https://doi.org/10.1016/0022-2364(85)90104-0
- 42
B. Bleaney, J. Magn. Reson. 8, 91 (1972). https://doi.org/10.1016/0022-2364(72)90027-3
- 43
J. A. Peters, J. Huskens, and D. J. Raber, Prog. Nucl. Magn. Reson. Spectrosc. 28, 283 (1996). https://doi.org/10.1016/0079-6565(95)01026-2
- 44
N. Ishikawa, T. Iino, and Y. Kaizu, J. Phys. Chem. A 107, 7879 (2003). https://doi.org/10.1021/jp034971n
- 45
D. P. Arnold and J. Jiang, J. Phys. Chem. A 105, 7525 (2001). https://doi.org/10.1021/jp0105847
- 46
A. G. Martynov and Y. G. Gorbunova, Polyhedron 29, 391 (2010). https://doi.org/10.1016/j.poly.2009.06.009
- 47
A. G. Martynov, Y. G. Gorbunova, and A. Y. Tsivadze, Dalton Trans. 40, 7165 (2011). https://doi.org/10.1039/c1dt10455a
- 48
K. P. Birin, Y. G. Gorbunova, and A. Y. Tsivadze, Magn. Reson. Chem. 48, 505 (2010). https://doi.org/10.1002/mrc.2612
- 49
M. A. Polovkova, A. G. Martynov, K. P. Birin, et al., Inorg. Chem. 55, 9258 (2016). https://doi.org/10.1021/acs.inorgchem.6b01292
- 50
A. G. Martynov, O. V. Zubareva, Y. G. Gorbunova, et al., Inorg. Chim. Acta 362, 11 (2009). https://doi.org/10.1016/j.ica.2008.01.008
- 51
A. G. Martynov, O. V. Zubareva, Y. G. Gorbunova, et al., Eur. J. Inorg. Chem, No. 30, 4800 (2007). https://doi.org/10.1002/ejic.200700489
- 52
A. G. Martynov, E. A. Safonova, Yu. G. Gorbunova, et al., Russ. J. Inorg. Chem. 55, 347 (2010). https://doi.org/10.1134/S0036023610030083
- 53
A. Yu. Tsivadze, A. G. Martynov, M. A. Polovkova, et al., Russ. Chem. Bull. 60, 2258 (2011). https://doi.org/10.1007/s11172-011-0345-y
- 54
R. J. Holmberg, M. A. Polovkova, A. G. Martynov, et al., Dalton Trans. 45, 9320 (2016). https://doi.org/10.1039/C6DT00777E
- 55
A. G. Martynov, M. A. Polovkova, G. S. Berezhnoy, et al., Inorg. Chem. 59, 9424 (2020). https://doi.org/10.1021/acs.inorgchem.0c01346
- 56
Y. Horii, S. Kishiue, M. Damjanović, et al., Chem.-Eur. J. 24, 4320 (2018). https://doi.org/10.1002/chem.201705378
- 57
A. G. Martynov, E. A. Safonova, A. Y. Tsivadze, et al., Coord. Chem. Rev. 387, 325 (2019). https://doi.org/10.1016/j.ccr.2019.02.004
- 58
S. Sakaue, A. Fuyuhiro, T. Fukuda, et al., Chem. Commun. 48, 5337 (2012). https://doi.org/10.1039/c2cc31125a
- 59
K. P. Birin, Y. G. Gorbunova, and A. Y. Tsivadze, Dalton Trans. 40, 11539 (2011). https://doi.org/10.1039/c1dt11141h
- 60
K. P. Birin, Y. G. Gorbunova, and A. Y. Tsivadze, Dalton Trans., 23 (2012). https://doi.org/10.1039/c2dt30841j
- 61
K. P. Birin, A. I. Poddubnaya, Y. G. Gorbunova, et al., Macroheterocycles 10, 514 (2017). https://doi.org/10.6060/mhc171258b
- 62
K. P. Birin, Y. G. Gorbunova, A. Y. Tsivadze, et al., J. Porphyr. Phthalocyanines 13, 283 (2009). https://doi.org/10.1142/S1088424609000358
- 63
K. P. Birin, K. A. Kamarova, Y. G. Gorbunova, et al., Prot. Met. 49, 173 (2013). https://doi.org/10.1134/S2070205113020032
- 64
X. Sun, R. Li, D. Wang, et al., Eur. J. Inorg. Chem., No. 19, 3806 (2004). https://doi.org/10.1002/ejic.200400289
- 65
N. Ishikawa, T. Iino, and Y. Kaizu, J. Am. Chem. Soc. 124, 11440 (2002). https://doi.org/10.1021/ja027119n
- 66
K. Katoh, T. Kajiwara, M. Nakano, et al., Chem.-Eur. J. 17, 117 (2011). https://doi.org/10.1002/chem.201002026
- 67
K. Katoh, B. K. Breedlove, and M. Yamashita, Chem. Sci. 7, 4329 (2016). https://doi.org/10.1039/C5SC04669F
- 68
T. Morita, M. Damjanovic, K. Katoh, et al., J. Am. Chem. Soc. 140, 2995 (2018). https://doi.org/10.1021/jacs.7b12667
Funding
This work was supported by the Russian Science Foundation (project no. 20-63-46026).
Author information
Affiliations
Corresponding author
Ethics declarations
The authors declare no conflict of interest.
Additional information
Translated by G. Kirakosyan
Rights and permissions
About this article
Cite this article
Gorbunova, Y.G., Martynov, A.G., Birin, K.P. et al. NMR Spectroscopy—A Versatile Tool for Studying the Structure and Magnetic Properties of Paramagnetic Lanthanide Complexes in Solutions (Review). Russ. J. Inorg. Chem. 66, 202–216 (2021). https://doi.org/10.1134/S0036023621020091
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords:
- lanthanide-induced shift
- lanthanide-induced relaxation
- phthalocyanines
- porphyrins
- spectral–structural correlations
- magnetic materials