Extraction Reprocessing of Fe,Ni-Containing Parts of Ni–MH Batteries

Abstract

A combined method for the reprocessing of Fe,Ni-containing parts of spent Ni–MH batteries has been developed. Leaching and extractive separation of Fe(III) and Ni(II) ions from anode grids of recovered commercially available batteries has been accomplished. The possibility of efficient separation of Fe(III) and Ni(II) ions (βFe/Ni = 22) in aqueous two-phase system based on polypropylene glycol-425 and leaching phase-forming solution based on nickel chloride has been shown for the first time. The obtained results can be used for the extraction reprocessing of Ni–MH batteries.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    M. Mao, J. Xu, Y. Li, and Z. Liu, J. Mater. Sci. 55, 3521 (2020). https://doi.org/10.1007/s10853-019-04205-0

    CAS  Article  Google Scholar 

  2. 2

    L. L. Larina, O. V. Alexeeva, O. V. Almjasheva, et al., Nanosyst. Phys. Chem. Math. 10, 70 (2019). https://doi.org/10.17586/2220-8054-2019-10-1-70-75

    CAS  Article  Google Scholar 

  3. 3

    S. Hohenberger, J. K. Jochum, M. J. Van Bael, et al., Materials 13, 197 (2020). https://doi.org/10.3390/ma13010197

    CAS  Article  PubMed Central  Google Scholar 

  4. 4

    I. A. Kodintsev, K. D. Martinson, A. A. Lobinsky, and V. I. Popkov, Nanosyst. Phys. Chem. Math. 10, 573 (2019). https://doi.org/10.17586/2220-8054-2019-10-5-573-578

    CAS  Article  Google Scholar 

  5. 5

    M. V. Ramos-Garces and J. L. Colon, Nanomaterials 10, 822 (2020). https://doi.org/10.3390/nano10050822

    CAS  Article  PubMed Central  Google Scholar 

  6. 6

    M. Dakshana, S. Meyvel, M. Malarvizhi, and P. Sathya, Nanosyst. Phys. Chem. Math. 11, 230 (2020). https://doi.org/10.17586/2220-8054-2020-11-2-230-236

    CAS  Article  Google Scholar 

  7. 7

    M. Assefi, S. Maroufi, Y. Yamauchi, and V. Sahajwalla, Current Opinion in Green and Sustainable Chemistry 24, 26 (2020). https://doi.org/10.1016/j.cogsc.2020.01.005

    Article  Google Scholar 

  8. 8

    X. Yi, G. Huo, and W. Tang, Hydrometallurgy 192, 105265 (2020). https://doi.org/10.1016/j.hydromet.2020.105265

    CAS  Article  Google Scholar 

  9. 9

    S.-L. Lin, K.-L. Huang, I.-C. Wang, et al., J. Air Waste Manage. Assoc. 66, 296 (2016). https://doi.org/10.1080/10962247.2015.1131206

    CAS  Article  Google Scholar 

  10. 10

    I. V. Zagaynov, A. S. Loktev, A. L. Arashanova, et al., Chem. Eng. J. 290, 193 (2016). https://doi.org/10.1016/j.cej.2016.01.066

    CAS  Article  Google Scholar 

  11. 11

    A. B. Shcherbakov, N. M. Zholobak, N. Ya. Spivak, and V. K. Ivanov, Russ. J. Inorg. Chem. 59, 1556 (2014). https://doi.org/10.1134/S003602361413004X

    CAS  Article  Google Scholar 

  12. 12

    O. A. Shilova, A. M. Nikolaev, A. S. Kovalenko, et al., Russ. J. Inorg. Chem. 65, 426 (2020). https://doi.org/10.1134/S0036023620030134

    CAS  Article  Google Scholar 

  13. 13

    S. Urkasym kyzy, V. V. Krisyuk, A. E. Turgambaeva, et al., J. Struct. Chem. 60, 1635 (2019). https://doi.org/10.1134/S0022476619100093

  14. 14

    A. Sobianowska-Turek, Waste Manage. 77, 213 (2018). https://doi.org/10.1016/j.wasman.2018.03.046

    CAS  Article  Google Scholar 

  15. 15

    K. Korkmaz, M. Alemrajabi, A. C. Rasmuson, and K. M. Forsberg, Metals 8, 1062 (2018). https://doi.org/10.3390/met8121062

    CAS  Article  Google Scholar 

  16. 16

    A. Fernandes, J. C. Afonso, and A. J. B. Dutra, Hydrometallurgy 133, 37 (2013). https://doi.org/10.1016/j.hydromet.2012.11.017

    CAS  Article  Google Scholar 

  17. 17

    L. Li, S. Xu, Z. Ju, and F. Wu, Hydrometallurgy 100, 41 (2009). https://doi.org/10.1016/j.hydromet.2009.09.012

    CAS  Article  Google Scholar 

  18. 18

    K. Larsson, C. Ekberg, and A. Odegaard-Jensen, Waste Manage. 33, 689 (2013). https://doi.org/10.1016/j.wasman.2012.06.001

    CAS  Article  Google Scholar 

  19. 19

    X. Yang, J. Zhang, and X. Fang, J. Hazard. Mater. 279, 384 (2014). https://doi.org/10.1016/j.jhazmat.2014.07.027

    CAS  Article  PubMed  Google Scholar 

  20. 20

    C. Liu, Y. Deng, J. Chen, et al., Ind. Eng. Chem. Res. 56, 7551 (2017). https://doi.org/10.1021/acs.iecr.7b01427

    CAS  Article  Google Scholar 

  21. 21

    V. Agarwal, M. K. Khalid, A. Porvali, et al., Sustainable Materials and Technologies 22, e00121 (2019). https://doi.org/10.1016/j.susmat.2019.e00121

    CAS  Article  Google Scholar 

  22. 22

    M.-S. Lee and K.-J. Lee, Hydrometallurgy 80, 163 (2005). https://doi.org/10.1016/j.hydromet.2005.06.010

    CAS  Article  Google Scholar 

  23. 23

    F. Hu, H. Hu, J. Yang, et al., J. Mol. Liq. 291, 111253 (2019). https://doi.org/10.1016/j.molliq.2019.111253

    CAS  Article  Google Scholar 

  24. 24

    M. C. Olivier, C. Dorfling, and J. J. Eksteen, Miner. Eng. 2728, 37 (2012). https://doi.org/10.1016/j.mineng.2011.12.006

    CAS  Article  Google Scholar 

  25. 25

    A. A. Voshkin, V. V. Belova, and A. I. Khol’kin, Russ. J. Inorg. Chem. 48, 608 (2003).

    Google Scholar 

  26. 26

    A. A. Voshkin, V. V. Belova, and Y. A. Zakhodyaeva, Russ. J. Inorg. Chem. 63, 387 (2018). https://doi.org/10.1134/S0036023618030233

    CAS  Article  Google Scholar 

  27. 27

    A. A. Voshkin, N. V. Kodin, D. F. Kondakov, and A. E. Kostanyan, Russ. J. Inorg. Chem. 55, 794 (2010). https://doi.org/10.1134/S0036023610050220

    CAS  Article  Google Scholar 

  28. 28

    A. A. Voshkin, V. V. Belova, V. I. Zhilov, et al., Russ. J. Inorg. Chem. 49, 1278 (2004).

    Google Scholar 

  29. 29

    O. M. Gradov, Y. A. Zakhodyaeva, I. V. Zinov’eva, and A. A. Voshkin, Molecules 24, 3549 (2019). https://doi.org/10.3390/molecules24193549

    CAS  Article  PubMed Central  Google Scholar 

  30. 30

    Yu. A. Zakhodyaeva, I. V. Zinovyeva, E. S. Tokar, and A. A. Voshkin, Molecules 24, 4078 (2019). https://doi.org/10.3390/molecules24224078

    CAS  Article  PubMed Central  Google Scholar 

  31. 31

    Yu. A. Zakhodyaeva, K. V. Izyumova, M. S. Solov’eva, and A. A. Voshkin, Theor. Found. Chem. Eng. 51, 883 (2017). https://doi.org/10.1134/S0040579517050244

    CAS  Article  Google Scholar 

  32. 32

    Yu. A. Zakhodyaeva, I. V. Zinov’eva, and A. A. Voshkin, Theor. Found. Chem. Eng. 53, 735 (2019). https://doi.org/10.1134/S0040579519050373

    CAS  Article  Google Scholar 

  33. 33

    M. I. Fedorova, Yu. A. Zakhodyaeva, and A. A. Voshkin, Teor. Osn. Khim. Tekhnol. 54, 304 (2020). https://doi.org/10.31857/S0040357120030021

    Article  Google Scholar 

  34. 34

    M. I. Fedorova, I. V. Zinovyeva, Yu. A. Zakhodyaeva, and A. A. Voshkin, Theor. Found. Chem. Eng. 54, 313 (2020). https://doi.org/10.1134/S0040579520020037

    CAS  Article  Google Scholar 

  35. 35

    Patricio P. Rocha, M. C. Mesquita, L. H. M. Silva, and M. C. H. Silva, J. Hazard. Mater. 193, 311 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.062

    CAS  Article  Google Scholar 

  36. 36

    A. Valadares, C. F. Valadares, and L. R. de Lemos, et al., Hydrometallurgy 181, 180 (2018). https://doi.org/10.1016/j.hydromet.2018.09.006

    CAS  Article  Google Scholar 

  37. 37

    M. Yizhak, J. Chem. Soc., Faraday Trans. 87, 2995 (1991).

    Article  Google Scholar 

  38. 38

    E. L. Cheluget, S. Gelinas, J. H. Vera, and M. E. Weber, J. Chem. Eng. Data 39, 127 (1994). https://doi.org/10.1021/je00013a036

    CAS  Article  Google Scholar 

  39. 39

    V. Torabinejad, M. Aliofkhazraei, S. Assareh, et al., J. Alloys Compd. 691, 841 (2017). https://doi.org/10.1016/j.jallcom.2016.08.329

    CAS  Article  Google Scholar 

  40. 40

    R. Orinakova, M. Streckova, L. Trnkova, et al., J. Electroanal. Chem. 594, 152 (2006). https://doi.org/10.1016/j.jelechem.2006.05.031

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and Moscow Government (project no. 19-33-70011) using equipment of the Shared Facility Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Voshkin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedorova, M.I., Zakhodyaeva, Y.A., Baranchikov, A.E. et al. Extraction Reprocessing of Fe,Ni-Containing Parts of Ni–MH Batteries. Russ. J. Inorg. Chem. 66, 266–272 (2021). https://doi.org/10.1134/S003602362102008X

Download citation

Keywords:

  • liquid–liquid extraction
  • aqueous two-phase systems
  • spent nickel–metal hydride batteries
  • green chemistry