Integrated Approach to Monitoring Volatile Organic Compounds by Photonic-Crystal Sensor Matrices

Abstract

An integrated hardware–software approach was proposed to record the analytical response of sensor matrices exposed for a long time to liquid hydrocarbons and their vapors. A cell was designed and 3D-printed to detect hydrocarbons by photonic-crystal sensor matrices with computer recording and accumulation of the diffuse reflectance spectra with subsequent metrological signal processing. The low content of volatile organic compounds in the air of the working area was determined, and the obtained data agree well with the stages of the working cycle in paint and varnish production. The statistical significance of the changes in the analytical signal of the photonic-crystal sensor that were caused by the time variation of the concentration of hydrocarbons was confirmed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    A. A. Eliseev and A. V. Lukashin, Functional Nanomaterials (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  2. 2

    A. Sato, Y. Ikeda, K. Yamaguchi, and V. Vohra, Nanomaterials 8, 169 (2018). https://doi.org/10.3390/nano8030169

    CAS  Article  PubMed Central  Google Scholar 

  3. 3

    L. Burratti, F. De Matteis, M. Casalboni, et al., Mater. Chem. Phys. 212, 274 (2018). https://doi.org/10.3390/ma11091547

    CAS  Article  Google Scholar 

  4. 4

    R. V. Nair and R. Vijaya, Prog. Quantum Electron. 34, 89 (2010). https://doi.org/10.1016/j.pquantelec.2010.01.001

    CAS  Article  Google Scholar 

  5. 5

    C. Fenzl, T. Hirsch, and O. S. Wolfbeis, Angew. Chem., Int. Ed. 53, 3318 (2014). https://doi.org/10.1002/anie.201307828

    CAS  Article  Google Scholar 

  6. 6

    H. Inan, M. Poyraz, F. Inci, et al., Chem. Soc. Rev. 46, 366 (2017). https://doi.org/10.1039/c6cs00206d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    M. Kuang, J. Wang, and L. Jiang, Chem. Soc. Rev. 45, 6833 (2016). https://doi.org/10.1039/C6CS00562D

    CAS  Article  PubMed  Google Scholar 

  8. 8

    D. Men, D. Liu, and Y. Li, Sci. Bull. 61, 1358 (2016). https://doi.org/10.1007/s11434-016-1134-7

    CAS  Article  Google Scholar 

  9. 9

    K. R. Phillips, G. T. England, S. Sunny, et al., Chem. Soc. Rev. 45, 281 (2016). https://doi.org/10.1039/C5CS00533G

    CAS  Article  PubMed  Google Scholar 

  10. 10

    R. C. Tseng, C. C. Chen, S. M. Hsu, and H. S. Chuang, Sensors 18, 2651 (2018). https://doi.org/10.3390/s18082651

    CAS  Article  Google Scholar 

  11. 11

    J. Cui, W. Zhu, N. Gao, et al., Angew. Chem., Int. Ed. 53, 3844 (2014). https://doi.org/10.1002/anie.201308959

    CAS  Article  Google Scholar 

  12. 12

    Q. Zhong, H. Xu, H. Ding, et al., Colloids Surf. A 433, 59 (2013). https://doi.org/10.1016/j.colsurfa.2013.04.053

    CAS  Article  Google Scholar 

  13. 13

    C. Fenzl, M. Kirchinger, T. Hirsch, and O. S. Wolfbeis, Chemosensors 2, 207 (2014). https://doi.org/10.3390/chemosensors2030207

    Article  Google Scholar 

  14. 14

    A. M. You, X. J. Ni, Y. H. Cao, and G. Q. Cao, J. Chin. Chem. Soc. (Weinheim, Ger.) 64, 1235 (2017). https://doi.org/10.1002/jccs.201700126

  15. 15

    M. Elsherif, M. U. Hassan, A. K. Yetisen, and H. Butt, ACS Nano 12, 5452 (2018). https://doi.org/10.1021/acsnano.8b00829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    V. V. Apyari, S. G. Dmitrienko, I. V. Batov, and Yu. A. Zolotov, J. Anal. Chem. 66, 144 (2011). https://doi.org/10.1134/s1061934811020043

    CAS  Article  Google Scholar 

  17. 17

    N. Milić, D. Novaković, and N. Kašiković, J. Graphic Eng. Des. 2 (2), 16 (2011).

    Google Scholar 

  18. 18

    O. V. Monogarova, K. V. Oskolok, and V. V. Apyari, J. Anal. Chem. 73, 1076 (2018). https://doi.org/10.1134/S1061934818110060

    CAS  Article  Google Scholar 

  19. 19

    A. V. Ivanov, E. S. Bolshakov, V. V. Apyari, et al., J. Anal. Chem. 74, 198 (2019). https://doi.org/10.1134/S1061934819020072

    CAS  Article  Google Scholar 

  20. 20

    W. K. Kuo, H. P. Weng, J. J. Hsu, and H. H. Yu, Mater. Chem. Phys. 173, 285 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.014

    CAS  Article  Google Scholar 

  21. 21

    Y. Chen, Q. Fu, D. Li, et al., Anal. Bioanal. Chem. 409, 6567 (2017). https://doi.org/10.1007/s00216-017-0605-2

    CAS  Article  PubMed  Google Scholar 

  22. 22

    C.-L. Chen, T.-R. Chen, S.-H. Chiu, and P. L. Urban, Sens. Actuators, B: Chem. 239, 608 (2017). https://doi.org/10.1016/j.snb.2016.08.031

    CAS  Article  Google Scholar 

  23. 23

    M. C. Carvalho and R. H. Murray, HardwareX 3, 10 (2018). https://doi.org/10.1016/j.ohx.2018.01.001

  24. 24

    A. S. Samokhin, J. Anal. Chem. 75, 416 (2011). https://doi.org/10.1134/S1061934820030156

    Article  Google Scholar 

  25. 25

    E. S. Bol’shakov, A. V. Ivanov, A. A. Kozlov, and S. D. Abdullaev, Russ. J. Phys. Chem. A 92, 1530 (2018). https://doi.org/10.1134/S0036024418080083

    Article  Google Scholar 

  26. 26

    I. A. Yamanovskaya, T. V. Gerasimova, and A. V. Agafonov, Russ. J. Inorg. Chem. 63, 1096 (2018). https://doi.org/10.1134/S0036023618090218

    Article  Google Scholar 

  27. 27

    M. P. Zaytseva, A. G. Muradova, A. I. Sharapaev, et al., Russ. J. Inorg. Chem. 63, 1684 (2018). https://doi.org/10.1134/S0036023618120239

    CAS  Article  Google Scholar 

  28. 28

    A. A. Kozlov, S. D. Abdullaev, A. S. Aksenov, et al., J. Int. Sci. Publ. Mater. Methods Technol. 12, 64 (2018).

    Google Scholar 

  29. 29

    S. Holm, Scand. J. Stat. 6 (2), 65 (1979).

    Google Scholar 

  30. 30

    EURACHEM/CITAC Guide CG4: Quantifying Measurement Uncertainty in Analytical Measurement, Ed. by S. R. Ellison, M. Rosslein, and A. Williams (EURACHEM, 2000).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-03-00397).

A part of this work was performed under a state assignment on basic scientific research for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bol’shakov, E.S., Ivanov, A.V., Garmash, A.V. et al. Integrated Approach to Monitoring Volatile Organic Compounds by Photonic-Crystal Sensor Matrices. Russ. J. Inorg. Chem. 66, 217–224 (2021). https://doi.org/10.1134/S0036023621020030

Download citation

Keywords:

  • functional materials
  • photonic crystals
  • diffuse reflectance spectroscopy
  • chemical analysis