Integrated Approach to Monitoring Volatile Organic Compounds by Photonic-Crystal Sensor Matrices


An integrated hardware–software approach was proposed to record the analytical response of sensor matrices exposed for a long time to liquid hydrocarbons and their vapors. A cell was designed and 3D-printed to detect hydrocarbons by photonic-crystal sensor matrices with computer recording and accumulation of the diffuse reflectance spectra with subsequent metrological signal processing. The low content of volatile organic compounds in the air of the working area was determined, and the obtained data agree well with the stages of the working cycle in paint and varnish production. The statistical significance of the changes in the analytical signal of the photonic-crystal sensor that were caused by the time variation of the concentration of hydrocarbons was confirmed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    A. A. Eliseev and A. V. Lukashin, Functional Nanomaterials (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  2. 2

    A. Sato, Y. Ikeda, K. Yamaguchi, and V. Vohra, Nanomaterials 8, 169 (2018).

    CAS  Article  PubMed Central  Google Scholar 

  3. 3

    L. Burratti, F. De Matteis, M. Casalboni, et al., Mater. Chem. Phys. 212, 274 (2018).

    CAS  Article  Google Scholar 

  4. 4

    R. V. Nair and R. Vijaya, Prog. Quantum Electron. 34, 89 (2010).

    CAS  Article  Google Scholar 

  5. 5

    C. Fenzl, T. Hirsch, and O. S. Wolfbeis, Angew. Chem., Int. Ed. 53, 3318 (2014).

    CAS  Article  Google Scholar 

  6. 6

    H. Inan, M. Poyraz, F. Inci, et al., Chem. Soc. Rev. 46, 366 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    M. Kuang, J. Wang, and L. Jiang, Chem. Soc. Rev. 45, 6833 (2016).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    D. Men, D. Liu, and Y. Li, Sci. Bull. 61, 1358 (2016).

    CAS  Article  Google Scholar 

  9. 9

    K. R. Phillips, G. T. England, S. Sunny, et al., Chem. Soc. Rev. 45, 281 (2016).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    R. C. Tseng, C. C. Chen, S. M. Hsu, and H. S. Chuang, Sensors 18, 2651 (2018).

    CAS  Article  Google Scholar 

  11. 11

    J. Cui, W. Zhu, N. Gao, et al., Angew. Chem., Int. Ed. 53, 3844 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Q. Zhong, H. Xu, H. Ding, et al., Colloids Surf. A 433, 59 (2013).

    CAS  Article  Google Scholar 

  13. 13

    C. Fenzl, M. Kirchinger, T. Hirsch, and O. S. Wolfbeis, Chemosensors 2, 207 (2014).

    Article  Google Scholar 

  14. 14

    A. M. You, X. J. Ni, Y. H. Cao, and G. Q. Cao, J. Chin. Chem. Soc. (Weinheim, Ger.) 64, 1235 (2017).

  15. 15

    M. Elsherif, M. U. Hassan, A. K. Yetisen, and H. Butt, ACS Nano 12, 5452 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    V. V. Apyari, S. G. Dmitrienko, I. V. Batov, and Yu. A. Zolotov, J. Anal. Chem. 66, 144 (2011).

    CAS  Article  Google Scholar 

  17. 17

    N. Milić, D. Novaković, and N. Kašiković, J. Graphic Eng. Des. 2 (2), 16 (2011).

    Google Scholar 

  18. 18

    O. V. Monogarova, K. V. Oskolok, and V. V. Apyari, J. Anal. Chem. 73, 1076 (2018).

    CAS  Article  Google Scholar 

  19. 19

    A. V. Ivanov, E. S. Bolshakov, V. V. Apyari, et al., J. Anal. Chem. 74, 198 (2019).

    CAS  Article  Google Scholar 

  20. 20

    W. K. Kuo, H. P. Weng, J. J. Hsu, and H. H. Yu, Mater. Chem. Phys. 173, 285 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Y. Chen, Q. Fu, D. Li, et al., Anal. Bioanal. Chem. 409, 6567 (2017).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    C.-L. Chen, T.-R. Chen, S.-H. Chiu, and P. L. Urban, Sens. Actuators, B: Chem. 239, 608 (2017).

    CAS  Article  Google Scholar 

  23. 23

    M. C. Carvalho and R. H. Murray, HardwareX 3, 10 (2018).

  24. 24

    A. S. Samokhin, J. Anal. Chem. 75, 416 (2011).

    Article  Google Scholar 

  25. 25

    E. S. Bol’shakov, A. V. Ivanov, A. A. Kozlov, and S. D. Abdullaev, Russ. J. Phys. Chem. A 92, 1530 (2018).

    Article  Google Scholar 

  26. 26

    I. A. Yamanovskaya, T. V. Gerasimova, and A. V. Agafonov, Russ. J. Inorg. Chem. 63, 1096 (2018).

    Article  Google Scholar 

  27. 27

    M. P. Zaytseva, A. G. Muradova, A. I. Sharapaev, et al., Russ. J. Inorg. Chem. 63, 1684 (2018).

    CAS  Article  Google Scholar 

  28. 28

    A. A. Kozlov, S. D. Abdullaev, A. S. Aksenov, et al., J. Int. Sci. Publ. Mater. Methods Technol. 12, 64 (2018).

    Google Scholar 

  29. 29

    S. Holm, Scand. J. Stat. 6 (2), 65 (1979).

    Google Scholar 

  30. 30

    EURACHEM/CITAC Guide CG4: Quantifying Measurement Uncertainty in Analytical Measurement, Ed. by S. R. Ellison, M. Rosslein, and A. Williams (EURACHEM, 2000).

    Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research (project no. 18-03-00397).

A part of this work was performed under a state assignment on basic scientific research for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Author information



Corresponding author

Correspondence to A. V. Ivanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bol’shakov, E.S., Ivanov, A.V., Garmash, A.V. et al. Integrated Approach to Monitoring Volatile Organic Compounds by Photonic-Crystal Sensor Matrices. Russ. J. Inorg. Chem. 66, 217–224 (2021).

Download citation


  • functional materials
  • photonic crystals
  • diffuse reflectance spectroscopy
  • chemical analysis