Structural Features of Monomeric Octahedral Monooxo d 2-Rhenium(V) Complexes [ReO(\({\text{L}}_{{{\text{tetra}}}}^{n}\))(Lmono)] with Tetradentate Chelate (2O, 2N) Ligands Containing Oxygen and Nitrogen Atoms (Review)

Abstract

The structural features of twenty mononuclear octahedral monooxo d2-Re(V) complexes [ReO(\({\text{L}}_{{{\text{tetra}}}}^{n}\))(Lmono)] with tetradentate-chelate (2O, 2N) (\({\text{L}}_{{{\text{tetra}}}}^{n}\)) and monodentate (Lmono) ligands have been studied. The O(\({\text{L}}_{{{\text{tetra}}}}^{n}\)) atoms or monodentate ligands Lmono2О, ОR, and Cl) are located in the trans positions to the multiply bound O(oxo) ligands. Geometric (trans, cis) isomerism in two triplets of complexes [ReO(\({\text{L}}_{{{\text{tetra}}}}^{n}\))(Lmono)], where Lmono = OR or Cl, have been considered.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCE

  1. 1

    M. A. Porai-Koshits and E. A. Gilinskaya, Itogi Nauki Tekh., Kristallokhimiya, 126 (1966).

  2. 2

    M. A. Porai-Koshits and L. O. Atovmyan, Koord. Khim. 1, 1271 (1975).

    CAS  Google Scholar 

  3. 3

    F. Griffith and C. Wicing, J. Chem. Soc. A, No. 3, 379 (1968).

  4. 4

    M. A. Porai-Koshits, Izv. Yugosl. Kristallogr. Tsentra 9, 19 (1974).

    Google Scholar 

  5. 5

    M. A. Porai-Koshits and L. O. Atovmyan, Crystallochemistry of Molybdenum Coordination Compounds (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  6. 6

    E. M. Shustorovich, M. A. Porai-Koshits, and Yu. A. Buslaev, Coord. Chem. Rev. 17, 1 (1975).

    CAS  Article  Google Scholar 

  7. 7

    M. A. Porai-Koshits and V. S. Sergienko, Usp. Khim. 59, 86 (1990).

    CAS  Article  Google Scholar 

  8. 8

    F. H. Allen, Acta Crystallogr., Sect. B 58, 380 (2002).

    Article  Google Scholar 

  9. 9

    V. S. Sergienko and A. V. Churakov, Russ. J. Inorg. Chem. 61, 1708 (2016). https://doi.org/10.1134/S0036023616140047

    CAS  Article  Google Scholar 

  10. 10

    V. S. Sergienko, Russ. J. Inorg. Chem. 62, 751 (2017). https://doi.org/10.1134/S0036023617060195

    CAS  Article  Google Scholar 

  11. 11

    V. S. Sergienko and A. V. Churakov, Russ. J. Inorg. Chem. 62, 1326 (2017). https://doi.org/10.1134/S0036023617100151

    Article  Google Scholar 

  12. 12

    V. S. Sergienko and A. V. Churakov, Russ. J. Inorg. Chem. 63, 631 (2018). https://doi.org/10.1134/S0036023618050121

    CAS  Article  Google Scholar 

  13. 13

    V. S. Sergienko and A. V. Churakov, Russ. J. Inorg. Chem. 63, 753 (2018). https://doi.org/10.1134/S0036023618060219

    CAS  Article  Google Scholar 

  14. 14

    V. S. Sergienko, Russ. J. Inorg. Chem. 63, 1757 (2018). https://doi.org/10.1134/S0036023618140048

    Article  Google Scholar 

  15. 15

    V. S. Sergienko and A. V. Churakov, Russ. J. Coord. Chem. 45, 332 (2019). https://doi.org/10.1134/S1070328419030072

    Article  Google Scholar 

  16. 16

    V. S. Sergienko, Russ. J. Coord. Chem. 45, 439 (2019). https://doi.org/10.1134/S1070328419060071

    CAS  Article  Google Scholar 

  17. 17

    V. S. Sergienko and A. V. Churakov, Russ. J. Coord. Chem. 45, 651 (2019). https://doi.org/10.1134/S1070328419080074

    CAS  Article  Google Scholar 

  18. 18

    V. S. Sergienko and A. V. Churakov, Crystallogr. Rep. 59, 300 (2014). https://doi.org/10.7868/S0023476114030199

    CAS  Article  Google Scholar 

  19. 19

    V. S. Sergienko and A. V. Churakov, Crystallogr. Reo. 58, 5 (2013). https://doi.org/10.1134/S106377451301010112

    Article  Google Scholar 

  20. 20

    V. S. Sergienko, Russ. J. Inorg. Chem. 64, 1127 (2019). https://doi.org/10.1134/S0036023619090183

    CAS  Article  Google Scholar 

  21. 21

    E. A. Ison, J. E. Cessarich, G. Du, et al., Inorg. Chem. 45, 2385 (2006).

    CAS  Article  Google Scholar 

  22. 22

    P. D. Benny, C. L. Barnes, P. M. Piekarski, et al., Inorg. Chem. 42, 6516 (2003).

    Article  Google Scholar 

  23. 23

    S. Jurison, L. F. Lindoy, K. P. Dancey, et al., Inorg. Chem. 23, 227 (1984).

    Article  Google Scholar 

  24. 24

    K. J. van Bommel, W. Verboom, H. Kooijman, et al., Inorg. Chem. 37, 4197 (1998).

    CAS  Article  Google Scholar 

  25. 25

    H. J. Banbery, F. McQuillan, T. A. Hamor, et al., Polyhedron 8, 559 (1989).

    CAS  Article  Google Scholar 

  26. 26

    N. Zwettler, J. A. Schachner, F. Belay, and N. C. Mösch-Zanetti, Inorg. Chem. 55, 5973 (2016).

    CAS  Article  Google Scholar 

  27. 27

    W. A. Hermann, M. U. Rauch, and G. R. J. Artus, Inorg. Chem. 35, 1988 (1996).

    Article  Google Scholar 

  28. 28

    H. J. Banbery, F. McQuillan, T. A. Hamor, et al., J. Chem. Soc., Dalton Trans., No. 7, 1405 (1989).

  29. 29

    T. I. A. Gerber, D. Luzipo, and P. Mayer, J. Coord. Chem. 58, 1505 (2005).

    CAS  Article  Google Scholar 

  30. 30

    P. Mayer, N. C. Yumata, T. I. A. Gerber, and A. Abrahams, S. Afr. Chem. 63, 40 (2010).

    Google Scholar 

  31. 31

    A. Mondal, S. Sarcar, D. Chopra, et al., Dalton Trans., No. 17, 3244 (2004).

  32. 32

    S. Basak and K. K. Rajak, Inorg. Chem. 47, 8813 (2008).

    CAS  Article  Google Scholar 

  33. 33

    D. A. Rotsch, K. M. Reining, E. M. Weis, et al., Dalton Trans. 42, 1164 (2013).

    Article  Google Scholar 

  34. 34

    J. L. Green, P. D. Benny, H. P. Engelbrecht, et al., Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 35 (2005).

    Article  Google Scholar 

  35. 35

    R. Battistuzzi and M. Saladini, Acta Crystallogr., Sect. C 47, 501 (1991).

    Article  Google Scholar 

  36. 36

    O. Knoesen, P. L. Wessels, R. Görls, and S. Lotz, Inorg. Chem. 40, 1199 (2001).

    CAS  Article  Google Scholar 

  37. 37

    D. Cremer and J. A. Pople, J. Am. Chem. Soc. 97, 1354 (1975).

    CAS  Article  Google Scholar 

  38. 38

    P. D. Benny, J. L. Green, H. P. Engelbercht, et al., Inorg. Chem. 44, 2381 (2005).

    CAS  Article  Google Scholar 

  39. 39

    W. A. Volkert and T. J. Offman, J. Chem. Rev. 93, 1137 (1999).

    Google Scholar 

  40. 40

    C. Bolzati, M. Porchia, G. Bandoli, et al., Inorg. Chim. Acta 315, 205 (2001).

    CAS  Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Assignment of the Kurnakov Institute in the field of fundamental scientific research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Sergienko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sergienko, V.S., Churakov, A.V. Structural Features of Monomeric Octahedral Monooxo d 2-Rhenium(V) Complexes [ReO(\({\text{L}}_{{{\text{tetra}}}}^{n}\))(Lmono)] with Tetradentate Chelate (2O, 2N) Ligands Containing Oxygen and Nitrogen Atoms (Review). Russ. J. Inorg. Chem. 66, 42–55 (2021). https://doi.org/10.1134/S003602362101006X

Download citation

Keywords:

  • crystal structure
  • X-ray diffraction
  • monomeric octahedral monooxo complexes
  • tetradentate tris(chelate) (2O
  • 2N) ligands
  • monodentate ligands