Diagram of Solid-Phase Equilibria in the SnSe–Sb2Se3–Se System and Thermodynamic Properties of Tin Antimony Selenides

Abstract

The SnSe–Sb2Se3–Se system was studied by the emf method and X-ray powder diffraction analysis, and the diagram of solid-phase equilibria at 400 K was constructed. The partial thermodynamic functions of SnSe in various phase regions of the studied system were calculated from the measured emf of concentration cells with respect to a SnSe electrode in the temperature range 300–450 K. These data together with the corresponding thermodynamic functions of SnSe and Sb2Se3 were used to calculate the partial molar functions of tin in alloys, and also the standard thermodynamic functions of formation and standard entropies of the compounds SnSe2, Sn2Sb6Se11, SnSb2Se4, and Sn2Sb2Se5.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    N. Alonso-Vante, Chalcogenide Materials for Energy Conversion: Pathways to Oxygen and Hydrogen Reactions (Springer Int. Publ. AG, Cham, Switzerland, 2018). https://doi.org/10.1007/978-3-319-89612-0

  2. 2

    Applications of Chalcogenides: S, Se, and Te, Ed. by G. K. Ahluwalia (Springer Int. Publ. AG, Cham, Switzerland, 2017). https://doi.org/10.1007/978-3-319-41190-3

  3. 3

    Chalcogenide: From 3D to 2D and Beyond, Ed. by X. Liu, S. Lee, J. K. Furdyna, T. Luo, and Y-H. Zhang (Elsevier, Duxford, UK, 2020). https://doi.org/10.1016/C2017-0-03585-1

  4. 4

    Chalcogenides: Advances in Research and Applications, Ed. by W. Phillips (Nova Sci. Publ., Inc., Hauppauge, NY, USA, 2018).

    Google Scholar 

  5. 5

    E. Greenberg, B. Hen, S. Layek, et al., J. Phys. Rev. B 95, 064 514 (2017). https://doi.org/10.1103/PhysRevB.95.064514

    Article  Google Scholar 

  6. 6

    R. Matsumoto, Z. Hou, H. Hara, et al., Appl. Phys. Express 11, 093 101 (2018). https://doi.org/10.7567/APEX.11.093101

    Article  Google Scholar 

  7. 7

    A. Kosuga, K. Nakai, M. Matsuzawa, et al., J. Alloys Compd. 618, 463 (2015). https://doi.org/10.1016/j.jallcom.2014.08.183

    CAS  Article  Google Scholar 

  8. 8

    V. S. Zemskov, L. E. Shelimova, P. P. Konstantinov, et al., Inorg. Mater. Appl. Res. 4, 77 (2013). https://doi.org/10.1134/S2075113313020196

    Article  Google Scholar 

  9. 9

    F. von Rohr, A. Schilling, and R. J. Cava, J. Phys.: Condens. Matter 25, 075 804 (2013). https://doi.org/10.1088/0953-8984/25/7/075804

    CAS  Article  Google Scholar 

  10. 10

    T. V. Quang and M. Kim, J. Korean Phys. Soc. 74, 256 (2019). https://doi.org/10.3938/jkps.74.256

    CAS  Article  Google Scholar 

  11. 11

    B. A. Kuropatwa and H. Kleinke, Z. Anorg. Allg. Chem. 638, 2640 (2012). https://doi.org/10.1002/zaac.201200284

    CAS  Article  Google Scholar 

  12. 12

    M. B. Babanly, E. V. Chulkov, Z. S. Aliev, et al., Russ. J. Inorg. Chem. 62, 1703 (2017). https://doi.org/10.1134/S0036023617130034

    CAS  Article  Google Scholar 

  13. 13

    I. A. Shvets, I. I. Klimovskikh, Z. S. Aliev, et al., J. Phys. Rev. B 100, 195 127 (2019). https://doi.org/10.1103/PhysRevB.100.195127

    Article  Google Scholar 

  14. 14

    M. G. Vergniory, T. V. Menshchikova, I. V. Silkin, et al., J. Phys. Rev. B 92, 045 134 (2015). https://doi.org/10.1103/physrevb.92.045134

    Article  Google Scholar 

  15. 15

    D. Pacile, S. V. Eremeev, M. Caputo, et al., Phys. Status Solidi RRL, 1 800 341 (2018). https://doi.org/10.1002/pssr.201800341

  16. 16

    M. Papagno, S. Eremeev, J. Fujii, et al., ACS Nano 10, 3518 (2016). https://doi.org/10.1021/acsnano.5b07750

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Y. Hattori, Y. Tokumoto, K. Kimoto, et al., Sci. Rep. 10, 7957 (2020). https://doi.org/10.1038/s41598-020-64742-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    I. A. Shvets, I. I. Klimovskikh, Z. S. Aliev, et al., J. Phys. Rev. B 96, 235 124 (2017). https://doi.org/10.1103/physrevb.96.235124

    CAS  Article  Google Scholar 

  19. 19

    P. Mal, G. Bera, G. R. Turpu, et al., J. Phys. Chem. Chem. Phys. 21, 15 030 (2019). https://doi.org/10.1039/c9cp01494b

    CAS  Article  Google Scholar 

  20. 20

    T. Matsushita and K. Mukai, Chemical Thermodynamics in Materials Science: From Basics to Practical Applications (Springer Nature Singapore Pte Ltd., Singapore, 2018). https://doi.org/10.1007/978-981-13-0405-7

  21. 21

    G. F. Voronin and Ya. I. Gerasimov, Thermodynamics and Semiconductor Materials Science (MIET, Moscow, 1980), pp. 3–10 [in Russian].

    Google Scholar 

  22. 22

    M. B. Babanly, L. F. Mashadiyeva, D. M. Babanly, et al., Russ. J. Inorg. Chem. 64, 1649 (2019). https://doi.org/10.1134/S0036023619130035

    CAS  Article  Google Scholar 

  23. 23

    S. Z. Imamaliyeva, D. M. Babanly, D. B. Tagiev, et al., Russ. J. Inorg. Chem. 63, 1703 (2018). https://doi.org/10.1134/S0036023618130041

    Article  Google Scholar 

  24. 24

    M. M. Asadov, S. N. Mustafaeva, D. B. Tagiyev, et al., Russ. J. Inorg. Chem. 65, 733 (2020). https://doi.org/10.1134/S0036023620050022

    CAS  Article  Google Scholar 

  25. 25

    E. N. Ismailova, L. F. Mashadieva, I. B. Bakhtiyarly, et al., Russ. J. Inorg. Chem. 64, 801 (2019). https://doi.org/10.1134/S0036023619060093

    CAS  Article  Google Scholar 

  26. 26

    I. B. Bakhtiyarly, R. D. Kurbanova, A. S. Abdullaeva, et al., Russ. J. Inorg. Chem. 64, 890 (2019). https://doi.org/10.1134/S0036023619070039

    CAS  Article  Google Scholar 

  27. 27

    A. V. Kertman, Russ. J. Inorg. Chem. 64, 130 (2019). https://doi.org/10.1134/S0036023619010133

    CAS  Article  Google Scholar 

  28. 28

    F. N. Guseinov, K. N. Babanly, I. I. Aliev, et al., Russ. J. Inorg. Chem. 57, 100 (2012). https://doi.org/10.1134/S003602361201010X

    CAS  Article  Google Scholar 

  29. 29

    F. N. Guseinov, A. E. Seidzade, Yu. A. Yusibov, et al., Inorg. Mater. 53, 354 (2017). https://doi.org/10.1134/S0020168517040057

    CAS  Article  Google Scholar 

  30. 30

    M. B. Babanly, F. N. Guseinov, G. B. Dashdyeva, et al., Inorg. Mater. 47, 235 (2011). https://doi.org/10.1134/S0020168511030022

    CAS  Article  Google Scholar 

  31. 31

    M. B. Babanly, A. V. Shevelkov, F. N. Guseinov, et al., Inorg. Mater. 47, 712 (2011). https://doi.org/10.1134/S002016851107003X

    CAS  Article  Google Scholar 

  32. 32

    Sh. H. Mansimova, R. J. Mirzoeva, L. F. Mashadiyeva, et al., J. Appl. Sol. Stat. Chem., No. 4, 104 (2018). https://doi.org/10.18572/2619-0141-2018-4-5-104-111

  33. 33

    T. A. Ostapyuk, I. M. Yermiychuk, O. F. Zmiy, et al., Chem. Met. Alloys 2, 164 (2009). https://doi.org/10.30970/cma2.0100

    Article  Google Scholar 

  34. 34

    W. Wobst, J. Less Common Metals 14, 77 (1968).

    CAS  Article  Google Scholar 

  35. 35

    G. G. Gospodinov, I. I. Odin, and A. V. Novoselova, Inorg. Mater. 11, 1211 (1975).

    CAS  Google Scholar 

  36. 36

    J. Chang and S. Chen, Metall. Mater. Trans. E 4, 89 (2017). https://doi.org/10.1007/s40553-017-0110-8

    CAS  Article  Google Scholar 

  37. 37

    J. Shen and R. Blachnik, J. Therm. Acta 399, 245 (2003). https://doi.org/10.1016/s0040-6031(02)00461-6

    CAS  Article  Google Scholar 

  38. 38

    E. N. Ismailova, I. B. Bakhtiyarly, and M. B. Babanly, J. Chem. Probl., No. 2, 250 (2020). https://doi.org/10.32737/2221-8688-2020-2-250-256

  39. 39

    P. K. Smith and J. B. Parise, Acta Crystallogr., Sect. B 41, 84 (1985). https://doi.org/10.1107/S0108768185001665

    Article  Google Scholar 

  40. 40

    A. Mukherjee, Jpn. J. Appl. Physics 20, 681 (1982).

    CAS  Google Scholar 

  41. 41

    J. Emsley, The Elements, 3rd ed. (Clarendon, Oxford, 1998).

    Google Scholar 

  42. 42

    T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed. (ASM Int., Mat. Park. Ohio, 1990).

    Google Scholar 

  43. 43

    M. B. Babanly and Yu. A. Yusibov, in Electrochemical Methods in Thermodynamics of Inorganic Systems (ELM, Baku, 2011) [in Russian].

    Google Scholar 

  44. 44

    A. G. Morachevskii, G. F. Voronin, V. A. Geiderikh, and I. B. Kutsenok, Electrochemical Investigation Methods in Thermodynamics of Metal Systems (ITsK Akademkniga, Moscow, 2003) [in Russia].

  45. 45

    V. P. Vassiliev and V. A. Lysenko, Electrochim. Acta 222, 1770 (2016). https://doi.org/10.1016/j.electacta.2016.11.075

    CAS  Article  Google Scholar 

  46. 46

    V. R. Sidorko, L. V. Goncharuk, and R. V. Antonenko, Powder Metal. Metal Ceramics 47, 234 (2008). https://doi.org/10.1007/s11106-008-9009-3

    CAS  Article  Google Scholar 

  47. 47

    S. Z. Imamaliyeva, S. S. Musayeva, D. M. Babanly, et al., Thermochim. Acta 679, 178 319 (2019). https://doi.org/10.1016/j.tca.2019.178319

    CAS  Article  Google Scholar 

  48. 48

    E. N. Ismayilova, D. M. Babanly, V. P. Zlomanov, et al., J. New Mater. Comp. Appl., No. 3 (2020).

  49. 49

    Thermal Constants of Substances: Database (Institute of Thermal Physics of Extreme States, Joint Institute of High-Temperatures, Moscow, Russia; Chemical Faculty, Moscow State University, Moscow, Russia) [in Russian]. http://www.chem.msu.su/cgi-bin/tkv.pl?show= welcom.html.

  50. 50

    Materials Thermochemistry, 6th ed., Ed. by C. B. Alcock, O. Kubaschewski, and P. J. Spencer (Butterworth-Heinemann, Oxford, 1993).

    Google Scholar 

  51. 51

    I. Barin, Thermochemical Data of Pure Substances, 3rd ed. (VCH, New York, 2008).

    Google Scholar 

  52. 52

    Ya. I. Gerasimov, A. N. Krestovnikov, and S. I. Gorbov, Chemical Thermodynamics in Non-Ferrous Metal Industry: Handbook (Metallurgiya, Moscow, 1974) Vol. 6, p. 312.

    Google Scholar 

  53. 53

    B. W. Howlett, S. Misra, and M. Bever, Trans. Metall. Soc. AIME 230, 1367 (1964).

    CAS  Google Scholar 

  54. 54

    B. T. Melekh, N. B. Stepanova, and T. A. Fomina, Zh. Fiz. Khim. 45, 2018 (1971).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed at the International Joint Research Laboratory “Advanced Materials for Spintronics and Quantum Computing” established between the Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan, and the Donostia International Physics Center, Donostia–San Sebastián, Gipuzkoa, Basque Country, Spain.

Funding

This work was supported in part by the Science Development Foundation of the President of Azerbaijan Republic (grant no. EİF-BGM-4-RFTF-1/2017-21/11/4-М-12).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Babanly.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ismailova, E.N., Mashadieva, L.F., Babanly, D.M. et al. Diagram of Solid-Phase Equilibria in the SnSe–Sb2Se3–Se System and Thermodynamic Properties of Tin Antimony Selenides. Russ. J. Inorg. Chem. 66, 96–103 (2021). https://doi.org/10.1134/S0036023621010046

Download citation

Keywords:

  • tin selenides
  • tin antimony selenides
  • phase diagram
  • emf method
  • thermodynamic properties