Experiment and Calculation of Solid Liquid Phase Equilibria in the Ternary System KCl−KBr−H2O at T = 273 K


In this work, the solid-liquid phase equilibrium in the ternary system KCl−KBr−H2O at T = 273 K has been investigated by using the isothermal dissolution equilibrium method. Based on determined solubility data of saturated liquid phase and corresponding humid residue composition, the experimental phase diagram has been constructed. The result shows that the type of the system is classified as completely solid solution type due to the existence of solid solution K(Cl, Br). The phase diagram of the ternary system KCl−KBr−H2O at 273 K is divided into an unsaturated liquid phase filed and one solid crystalline phase region corresponding to K(Cl, Br) by an univariant solubility curve on which there is without any invariant point. The function which described the relationship between the composition of solid solution and the solubility of two salts in saturated liquid phase was constructed by multiple regression. The Pitzer equation has been selected to calculate the solubility data in the ternary system KCl−KBr−H2O at T = 273 K. The solubility modelling approach agrees with experimental solubility data.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Y. T. Lin, J. Salt Lake Res. 8, 59 (2000).

  2. 2

    Y. T. Lin, Geo. Chem. Miner. 17, 175 (1995).

    Google Scholar 

  3. 3

    N. A. Schlesinger, P. F. Zorkin, et al., Zh. Prikl. Khim. 11, 1259 (1938).

    Google Scholar 

  4. 4

    A. G. Bergman and N. A. Vlasov, Izv. Sektora Fiz.-Khim. Anal. Akad. Nauk SSSR 17, 312 (1949).

    CAS  Google Scholar 

  5. 5

    Y. B. Weng, PhD Thesis (Tianjing Univ., 2008).

  6. 6

    Y. B. Weng, J. K. Wang, Q. X. Ying, and Y. F. Wang, Petrochem. Technol. 36, 358 (2007). https://doi.org/10.3321/j.issn:1000-8144.2007.04.008

    CAS  Article  Google Scholar 

  7. 7

    L. Z. Meng, Li. D, and T. L. Deng, Calphad 43, 105 (2013). https://doi.org/10.1016/j.calphad.2013.04.002

    CAS  Article  Google Scholar 

  8. 8

    D. Li, S. S. Li, and L. Z. Meng, J. Chem. Eng. Data 62, 833 (2017). https://doi.org/10.1021/acs.jced.6b00855

    CAS  Article  Google Scholar 

  9. 9

    K. J. Zhang, S. H. Sang, and D. Wang, Salt Ind. Chem. Ind. 40, 5 (2011).

    Google Scholar 

  10. 10

    L. Z. Meng, D. Li, and C. Y. Ma, Russ. J. Phys. Chem. 88, 2283 (2014). https://doi.org/10.1134/S0036024414130135

    CAS  Article  Google Scholar 

  11. 11

    Y. B. Weng, Y. F. Wang, J. K. Wang, and Q. X. Ying, J. Chem. Eng. Chin. Univ. 21, 695 (2007). https://doi.org/10.3321/j.issn:1003-9015.2007.04.027

    CAS  Article  Google Scholar 

  12. 12

    Y. Yao, R. H. Cai, S. B. Gao, et al., Salt Ind. Chem. Ind. 41, 24 (2012).

    CAS  Google Scholar 

  13. 13

    P. S. Song and C. H. Fang, J. Salt Lake Res. 5, 47 (1997).

  14. 14

    C. E. Harvie and J. H. Weare, Geochim. Cosmochim. Acta 44, 981 (1980). https://doi.org/10.1016/0016-7037(80)90287-2

    CAS  Article  Google Scholar 

  15. 15

    C. E. Harvie, H. P. Eugster, and J. H. Weare, Geochim. Cosmochim. Acta 46, 1603 (1982). https://doi.org/10.1016/0016-7037(82)90317-9

    CAS  Article  Google Scholar 

  16. 16

    C. E. Harvie, N. Møller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723 (1984). https://doi.org/10.1016/0016-7037(84)90098-X

    CAS  Article  Google Scholar 

  17. 17

    C. Balarew, C. Christov, S. Petrenko, and V. Valyashko, J. Solution Chem. 22, 173 (1993). https://doi.org/10.1007/BF00650683

    CAS  Article  Google Scholar 

  18. 18

    C. Christov, Calphad 20, 501 (1996). https://doi.org/10.1016/S0364-5916(97)00012-6

    CAS  Article  Google Scholar 

  19. 19

    J. P. Greenberg and N. Møller, Geochim. Cosmochim. Acta 53, 2503 (1989). https://doi.org/10.1016/0016-7037(89)90124-5

    CAS  Article  Google Scholar 

  20. 20

    C. Christov, Geochim. Cosmochim. Acta 71, 3557 (2007). https://doi.org/10.1016/j.gca.2007.05.007

    CAS  Article  Google Scholar 

  21. 21

    R. Salamat-Ahangari, J. Mol. Liq. 219, 1000 (2016). https://doi.org/10.1016/j.molliq.2016.04.006

    CAS  Article  Google Scholar 

  22. 22

    B. Hribar, N. T. Southall, V. Vlachy, and K. A. Dill, J. Chem. Soc. 124, 12302 (2002). https://doi.org/10.1021/ja026014h

    CAS  Article  Google Scholar 

Download references


This project was supported by the National Natural Science Foundation of China (41873071) and Scientific Research and Innovation team in Universities of Sichuan Provincial Department of Education (15TD0009).

Author information



Corresponding author

Correspondence to Shi-Hua Sang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue-Ping Zhang, Zhao, LR., Zhou, SY. et al. Experiment and Calculation of Solid Liquid Phase Equilibria in the Ternary System KCl−KBr−H2O at T = 273 K. Russ. J. Inorg. Chem. 65, 2062–2067 (2020). https://doi.org/10.1134/S0036023620140089

Download citation


  • equilibrium
  • solubility
  • potassium chloride
  • potassium bromine
  • Pitzer equation