Abstract–
Permanent magnets constitute an important base for advanced technologies. Rare-earth-based alloys are currently the main permanent magnet materials. Due to the limited availability and high costs, these magnets are, as a rule, used in small items. In large-scale equipment (e.g., in generators, motors, including magnetic levitation transport devices), more affordable and cheaper materials are addressed. Manganese-based alloys, in particular, AlMn, may be regarded as examples of these materials. In Russia, extensive research activity into aluminum–manganese alloys was during the period from the 1960s to the 1990s [1–3]. In other countries this research activity has continued till now. More than one hundred articles were published during the last decade. Most of them address bulk and film samples of the metastable magnetic phase τ-AlMn. Our review focuses on an analysis and systematization of contemporary studies into the preparation and properties of manganese–aluminum alloys; perhaps, it will serve to popularize research into manganese-based intermetallics as promising materials for permanent magnets in Russia.
This is a preview of subscription content, access via your institution.







REFERENCES
- 1
Yu. D. Tretyakov and E. A. Goodilin, Russ. Chem. Rev. 78, 801 (2009). https://doi.org/10.1070/RC2009v078n09ABEH004029
- 2
M. Alymov, I. Milyaev,. Kh. NurislamovA, and V. S. Yusupov, Tsvetn. Met., No. 1, 91 (2015).
- 3
J. M. D. Coey, Engineer 6, 119 (2020). https://doi.org/10.1016/j.eng.2018.11.03
- 4
J. M. Coey, J. Phys.: Condens. Matter 26, 064211 (2014). https://doi.org/10.1088/0953-8984/26/6/064211
- 5
M. A. Bohlmann, J. C. Koo, and J. H. Wise, J. Appl. Phys. 52, 2542 (1981).
- 6
O. Gutfleisch, M. A. Willard, E. Bruck, et al., Adv. Mater. 27, 821 (2011). https://doi.org/10.1002/adma.201002180
- 7
S. F. Marenkin, A. V. Kochura, A. D. Izotov, and M. G. Vasil’ev, Russ. J. Inorg. Chem. 63, 1753 (2018). https://doi.org/10.1134/S0036023618140036
- 8
Y. L. Ma, X. B. Liu, K. Gandha, et al., J. Appl. Phys. 115, 17A755 (2014). https://doi.org/10.1063/1.4868078
- 9
J. Fischbacher, A. Kovacs, M. Gusenbauer, et al., J. Phys. D: Appl. Phys. 51, 193002 (2018). https://doi.org/10.1088/1361-6463/aab7d1
- 10
J. Cui, M. Kramer, L. Zhou, et al., Acta Mater. 158, 118 (2018). https://doi.org/10.1016/j.actamat.2018.07.049
- 11
J. Yang, W. Yang, Z. Shao, et al., Chin. Phys. B 27, 117503 (2018). https://doi.org/10.1088/1674-1056/27/11/117503
- 12
R. Y. Umetsu, A. Sakuma, and K. Fukamichi, Appl. Phys. Lett. 89, 052504 (2006). https://doi.org/10.1063/1.2236103
- 13
A. J. J. Koch and P. Hokkeling, M. G. v.d. Steeg, and K. J. de Vos, J. Appl. Phys. 31, 75 (1960). https://doi.org/10.1063/1.1984610
- 14
A. Chaturvedi, R. Yaqub, and I. Baker, J. Phys.: Condens. Matter 26, 064201 (2014). https://doi.org/10.1088/0953-8984/26/6/064201
- 15
J. K. Brandon, W. B. Pearson, and P. W. Riley, ActaCryst. 33, 1088 (1977). https://doi.org/10.1107/S0567740877005433
- 16
M. Ellner, Metall. Trans. A 21, 1669 (1990). https://doi.org/10.1007/BF02672582
- 17
H. G. Meiner and K. Schubert, Z. Metallkd. 56, 523 (1965).
- 18
H. Kono, J. Phys. Soc. Jpn. 13, 1444 (1958). https://doi.org/10.1143/JPSJ.13.1444
- 19
J. H. Park, Y. K. Hong, and S. Bae, J. Appl. Phys. 107, 09A731 (2010). https://doi.org/10.1063/1.3337640
- 20
F. M. Jr. Walters and C. Wells, Trans. Am. Soc. Met. 23, 727 (1935).
- 21
N. Singh, V. Mudgil, K. Anand, et al., J. Alloys Compd. 633, 401 (2015). https://doi.org/10.1016/j.jallcom.2015.02.041
- 22
L. Pareti, F. Bolzoni, F. Leccabue, and A. E. Ermakov, J. Appl. Phys. 59, 3824 (1986). https://doi.org/10.1063/1.336723
- 23
Y. J. Kim and J. H. Perepezko, Mater. Sci. Eng., A 163, 127 (1993). https://doi.org/10.1016/0921-5093(93)90586-4
- 24
Q. Zeng, I. Baker, J. Cui, and Z. Yan, J. Magn. Magn. Mater. 308, 214 (2007). https://doi.org/10.1016/j.jmmm.2006.05.032
- 25
J. Z. Wei, Z. G. Song, Y. B. Yang, et al., AIP Adv. 4, 127113 (2014). https://doi.org/10.1063/1.4903773
- 26
S. Kojima, K. Kojima, S. Mitani, and T. Kubo, AIP. Conf. Proc. 24, 768 (1975). https://doi.org/10.1063/1.30281
- 27
J. J. Van Den Broek, H. Donkersloot, G. Van Tendeloo, and J. Van Landuyt, Acta Metall. 27, 1497 (1979). https://doi.org/10.1016/0001-6160(79)90172-X
- 28
A. Chaturvedi, R. Yaqub, and I. Baker, Metals 4, 20 (2014). https://doi.org/10.3390/met4010020
- 29
V. M. Gundyrev, M. A. Uimin, A. E. Ermakov, and B. Andreeva, Phys. Status Solidi A 91, 55 (1985). https://doi.org/10.1002/pssa.2210910152
- 30
O. Obi, L. Burns, Y. Chen, et al., J. Alloys Compd. 582, 598 (2014). https://doi.org/10.1016/j.jallcom.2013.08.086
- 31
P. Saravan, D. Deepika, J.-H. Hsuet al., RSC Adv. 5, 92406 (2015). https://doi.org/10.1039/c5ra16550d
- 32
H. Fang, S. Kontos, J. Angstrom, et al., J. Solid State Chem. 237, 300 (2016). https://doi.org/10.1016/j.jssc.2016.02.031
- 33
P. Saetang, T. Charoensuk, U. Boonyang, et al., Transact. Indian Inst. Met. 73, 929 (2020). https://doi.org/10.1007/s12666-020-01912-0
- 34
D. Palanisamy, S. Singh, and C. Srivastava, Metallurg. Mater. Transact. A 47, 6555 (2016). https://doi.org/10.1007/s11661-016-3756-4
- 35
Z. Shao, H. Zhao, J. Zeng, et al., AIP Adv. 7, 056213 (2017). https://doi.org/10.1063/1.4974277
- 36
W. Lu, J. Niu, T. Wang, et al., J. Alloys Compd. 675, 163 (2016). https://doi.org/10.1016/j.jallcom.2016.03.098
- 37
Z. Xiang, X. Wang, Y. Song, et al., J. Magn. Magn. Mater. 475, 479 (2019). https://doi.org/10.1016/j.jmmm.2018.12.003
- 38
X. Tong, P. Sharma, and A. Makino, J. Phys. D: Appl. Phys. 3, 175001 (2020). https://doi.org/10.1088/1361-6463/ab7039
- 39
N. Singh, R. Shyam, N. K. Upadhyay, and A. Dhar, IOP Conf. Ser.-Mater. Sci. Eng. 73, 012042 (2015). https://doi.org/10.1088/1757-899X/73/1/012042
- 40
P. Saravanan, J. H. Hsu, V. T. P. Vinod, et al., Appl. Phys. Lett. 107, 192407 (2015). https://doi.org/10.1063/1.4935861
- 41
K. P. Su, X. X. Chen, H. O. Wang, et al., Mater. Charact. 114, 263 (2016). https://doi.org/10.1016/j.matchar.2016.03.011
- 42
D. Palanisamy, G. Madras, and K. Chattopadhyay, J. Magn. Magn. Mater. 439, 181 (2017). https://doi.org/10.1016/j.jmmm.2017.04.083
- 43
J. Rial, E. M. Palmero, and A. Bollero, Engineer 6, 173 (2020). https://doi.org/10.1016/j.eng.2019.03.013
- 44
J.-G. Lee, X.-L. Wang, Z.-D. Zhang, and C.-J. Choi, Thin Solid Films 519, 8312 (2011). https://doi.org/10.1016/j.tsf.2011.03.094
- 45
P. Saravanan, V. T. P. Vinod, M. Cernik, et al., J. Magn. Magn. Mater. 374, 427 (2015). https://doi.org/10.1016/j.jmmm.2014.08.076
- 46
H. Fang, J. Cedervall, D. Hedlund, et al., Sci. Rep. 8, 2525 (2018). https://doi.org/10.1038/s41598-018-20606-8
- 47
R. Madugundo, O. Koylu-Alkan, and G. C. Hadjipanayis, AIP Adv. 6, 056009 (2016). https://doi.org/10.1063/1.4943242
- 48
D. Ernst, J. Tydings, and M. Pasnak, J. Appl. Phys. 36, 1241 (1965). https://doi.org/10.1063/1.1714187
- 49
S. Zhao, Yu. Wu, Z. Jiao, et al., Phys. Rev. Appl. 11, 064008 (2019). https://doi.org/10.1103/PhysvApplied.11.064008
- 50
R. McCurrie, J. Rickman, P. Dunk, and D. J. Hawkridge, IEEE Trans. Magn. 14, 682 (1978). https://doi.org/10.1109/TMAG.1978.1059950
- 51
C. Yanar, J. M. K. Wiezorek, V. Radmilovic, and W. A. Soffa, Metall. Trans. A 8, 2413 (2002). https://doi.org/10.1007/s11661-002-0363-3
- 52
D. Palanisamy, C. Srivastava, G. Madras, and K. Chattopadhyay, J. Mater. Sci. 52, 4109 (2017). https://doi.org/10.1007/s10853-016-0673-2
- 53
S. F. Marenkin, A. N. Aronov, I. V. Fedorchenko, et al., RU Patent 2700896. Byul.Izobret. No. 27 (2019).
- 54
V. M. Novotortsev, A. V. Kochura, S. F. Marenkin, et al., Rus. J. Inorg. Chem. 56, 1951 (2011). https://doi.org/10.1134/S0036023611120400
- 55
S. F. Marenkin, A. I. Ril’, I. V. Fedorchenko, and V. V. Kozlov, Russ. J. Inorg. Chem. 65, (2020). https://doi.org/1092.10.31857/S0044457X20080115
- 56
T. Klemmer, D. Hoydick, H. Okumura, et al., Scr. Metall. Mater. 33, 1793 (1995). https://doi.org/10.1016/0956-716X(95)00413-P
- 57
Y. Kinemuchi, A. Fujita, and K. Ozaki, J. Chem. Soc., Dalton Trans. 45, 10936 (2016). https://doi.org/10.1039/c6dt00947f
- 58
I. Janotova, P. Svec, Sr., P. Svec, et al., J. Alloys Compd. 707, 137 (2017). https://doi.org/10.1016/j.jallcom.2016.11.171
- 59
W. Lu, J. Niu, T. Wang, K. Xia, et al., J. Alloys Compd. 685, 992 (2016). https://doi.org/10.1016/j.jallcom.2016.06.285
- 60
A. D. Crisan, F. Vasiliu, R. Nicula, et al., Mater. Charact. 140, 1 (2018). https://doi.org/10.1016/j.matchar.2018.03.034
- 61
R. Kobayashi, Y. Mitsui, R. Y. Umetsu, et al., Mater. Trans. 58, 1511 (2017). https://doi.org/10.2320/matertrans.MAW201709
- 62
P. Krakhmalev, I. Yadroitsev, I. Baker, and I. Yadroitsava, Proc. CIRP 74, 64 (2018). https://doi.org/10.1016/j.procir.2018.08.031
- 63
K. Anand, J. J. Pulikkotil, and S. Auluck, J. Alloys Compd. 601, 234 (2014). https://doi.org/10.1016/j.jallcom.2014.01.251
- 64
I. A. Radulov, Jr., V. V. Popov, A. Koptyug, et al., Add. Manuf. 30, 100787 (2019). https://doi.org/10.1016/j.addma.2019.100787
- 65
Y. Mitsui, R. Kobayashi, Y. Takanaga, et al., IEEE Trans. Magn. 55, 2100704 (2019). https://doi.org/10.1109/TMAG.2018.2860559
- 66
M. J. Lucis, T. E. Prost, X. Jiang, et al., Metals 4, 130 (2014). https://doi.org/10.3390/met4020130
- 67
H. Zhao, W. Y. Yang, Z. Y. Shao, et al., J. Alloys Compd. 680, 14 (2016). https://doi.org/10.1016/j.jallcom.2016.04.074
- 68
J. Park, H.-D. Qian, P.-Z. Si, et al., IEEE Trans. Magn. 54, 2100203 (2018). https://doi.org/10.1109/TMAG.2017.2765620
- 69
T. Mix, F. Bittner, K.-H. Müller, et al., Acta Mater. 128, 160 (2017). https://doi.org/10.1016/j.actamat.2017.02.011
- 70
P. Saravananan, J.-H. Hsub, V. T. P. Vinodc, et al., J. Alloys Compd. 695, 364 (2017). https://doi.org/10.1016/j.jallcom.2016.10.184
- 71
Z. Xiang, C. Xu, T. Wang, et al., Intermetallics 101, 13 (2018). https://doi.org/10.1016/j.intermet.2018.07.003
- 72
S. Zhao, Y. Wu, C. Zhang, et al., J. Alloys Compd. 755, 257 (2018). https://doi.org/10.1016/j.jallcom.2018.04.318
- 73
Z. Xiang, Y. Song, B. Deng, et al., J. Alloys Compd. 783, 416 (2019). https://doi.org/10.1016/j.jallcom.2018.12.350
- 74
S. Zhao, Yu. Wu, J. Wang, et al., J. Magn. Magn. Mater. 483, 164 (2019). https://doi.org/10.1016/j.jmmm.2019.03.103
- 75
S. Shafeie, H. Fang, D. Hedlund, et al., J. Solid State Chem. 274, 229 (2019). https://doi.org/10.1016/j.jssc.2019.03.035
- 76
P. Z. Si, C. J. Choi, J. Park, et al., AIP Adv. 10, 015320 (2020). https://doi.org/10.1063/1.5130064
- 77
P. Saravanan, S. Saju, V. T. P. Vinod, and M. Cernic, J. Mater. Sci. Mater. Electron. 31, 9878 (2020). https://doi.org/10.1007/s10854-020-03532-2
- 78
I. P. Suzdaleva, Yu. V. Maksimova, V. K. Imshennik, et al., Nanotechnol. Russ. 4, 467 (2009). https://doi.org/10.1134/S1995078009070076
- 79
G. H. Wantenaar, S. J. Campbell, D. H. Chaplin, et al., Phys. Rev. Lett. 37, 1767 (1976). https://doi.org/10.1103/PhysRevLett.37.1767
- 80
S. Bance, F. Bittner, T. G. Woodcock, et al., Acta Mater. 131, 48 (2017). https://doi.org/10.1016/j.actamat.2017.04.004
Funding
This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research, theme no. 0088-2014-0003).
Author information
Affiliations
Corresponding author
Additional information
Translated by O. Fedorova
Rights and permissions
About this article
Cite this article
Marenkin, S.F., Ril’, A.I. Al–Mn Hard Magnetic Alloys as Promising Materials for Permanent Magnets (Review). Russ. J. Inorg. Chem. 65, 2007–2019 (2020). https://doi.org/10.1134/S003602362014003X
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- : hard magnets
- permanent magnets
- aluminum–manganese alloys
- spin-valve structures