Al–Mn Hard Magnetic Alloys as Promising Materials for Permanent Magnets (Review)

Abstract–

Permanent magnets constitute an important base for advanced technologies. Rare-earth-based alloys are currently the main permanent magnet materials. Due to the limited availability and high costs, these magnets are, as a rule, used in small items. In large-scale equipment (e.g., in generators, motors, including magnetic levitation transport devices), more affordable and cheaper materials are addressed. Manganese-based alloys, in particular, AlMn, may be regarded as examples of these materials. In Russia, extensive research activity into aluminum–manganese alloys was during the period from the 1960s to the 1990s [1–3]. In other countries this research activity has continued till now. More than one hundred articles were published during the last decade. Most of them address bulk and film samples of the metastable magnetic phase τ-AlMn. Our review focuses on an analysis and systematization of contemporary studies into the preparation and properties of manganese–aluminum alloys; perhaps, it will serve to popularize research into manganese-based intermetallics as promising materials for permanent magnets in Russia.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Yu. D. Tretyakov and E. A. Goodilin, Russ. Chem. Rev. 78, 801 (2009). https://doi.org/10.1070/RC2009v078n09ABEH004029

    CAS  Article  Google Scholar 

  2. 2

    M. Alymov, I. Milyaev,. Kh. NurislamovA, and V. S. Yusupov, Tsvetn. Met., No. 1, 91 (2015).

  3. 3

    J. M. D. Coey, Engineer 6, 119 (2020). https://doi.org/10.1016/j.eng.2018.11.03

    CAS  Article  Google Scholar 

  4. 4

    J. M. Coey, J. Phys.: Condens. Matter 26, 064211 (2014). https://doi.org/10.1088/0953-8984/26/6/064211

    CAS  Article  Google Scholar 

  5. 5

    M. A. Bohlmann, J. C. Koo, and J. H. Wise, J. Appl. Phys. 52, 2542 (1981).

    CAS  Article  Google Scholar 

  6. 6

    O. Gutfleisch, M. A. Willard, E. Bruck, et al., Adv. Mater. 27, 821 (2011). https://doi.org/10.1002/adma.201002180

    CAS  Article  Google Scholar 

  7. 7

    S. F. Marenkin, A. V. Kochura, A. D. Izotov, and M. G. Vasil’ev, Russ. J. Inorg. Chem. 63, 1753 (2018). https://doi.org/10.1134/S0036023618140036

    CAS  Article  Google Scholar 

  8. 8

    Y. L. Ma, X. B. Liu, K. Gandha, et al., J. Appl. Phys. 115, 17A755 (2014). https://doi.org/10.1063/1.4868078

  9. 9

    J. Fischbacher, A. Kovacs, M. Gusenbauer, et al., J. Phys. D: Appl. Phys. 51, 193002 (2018). https://doi.org/10.1088/1361-6463/aab7d1

    CAS  Article  Google Scholar 

  10. 10

    J. Cui, M. Kramer, L. Zhou, et al., Acta Mater. 158, 118 (2018). https://doi.org/10.1016/j.actamat.2018.07.049

    CAS  Article  Google Scholar 

  11. 11

    J. Yang, W. Yang, Z. Shao, et al., Chin. Phys. B 27, 117503 (2018). https://doi.org/10.1088/1674-1056/27/11/117503

    CAS  Article  Google Scholar 

  12. 12

    R. Y. Umetsu, A. Sakuma, and K. Fukamichi, Appl. Phys. Lett. 89, 052504 (2006). https://doi.org/10.1063/1.2236103

    CAS  Article  Google Scholar 

  13. 13

    A. J. J. Koch and P. Hokkeling, M. G. v.d. Steeg, and K. J. de Vos, J. Appl. Phys. 31, 75 (1960). https://doi.org/10.1063/1.1984610

    Article  Google Scholar 

  14. 14

    A. Chaturvedi, R. Yaqub, and I. Baker, J. Phys.: Condens. Matter 26, 064201 (2014). https://doi.org/10.1088/0953-8984/26/6/064201

    CAS  Article  Google Scholar 

  15. 15

    J. K. Brandon, W. B. Pearson, and P. W. Riley, ActaCryst. 33, 1088 (1977). https://doi.org/10.1107/S0567740877005433

    Article  Google Scholar 

  16. 16

    M. Ellner, Metall. Trans. A 21, 1669 (1990). https://doi.org/10.1007/BF02672582

    Article  Google Scholar 

  17. 17

    H. G. Meiner and K. Schubert, Z. Metallkd. 56, 523 (1965).

  18. 18

    H. Kono, J. Phys. Soc. Jpn. 13, 1444 (1958). https://doi.org/10.1143/JPSJ.13.1444

    CAS  Article  Google Scholar 

  19. 19

    J. H. Park, Y. K. Hong, and S. Bae, J. Appl. Phys. 107, 09A731 (2010). https://doi.org/10.1063/1.3337640

  20. 20

    F. M. Jr. Walters and C. Wells, Trans. Am. Soc. Met. 23, 727 (1935).

    CAS  Google Scholar 

  21. 21

    N. Singh, V. Mudgil, K. Anand, et al., J. Alloys Compd. 633, 401 (2015). https://doi.org/10.1016/j.jallcom.2015.02.041

    CAS  Article  Google Scholar 

  22. 22

    L. Pareti, F. Bolzoni, F. Leccabue, and A. E. Ermakov, J. Appl. Phys. 59, 3824 (1986). https://doi.org/10.1063/1.336723

    CAS  Article  Google Scholar 

  23. 23

    Y. J. Kim and J. H. Perepezko, Mater. Sci. Eng., A 163, 127 (1993). https://doi.org/10.1016/0921-5093(93)90586-4

    Article  Google Scholar 

  24. 24

    Q. Zeng, I. Baker, J. Cui, and Z. Yan, J. Magn. Magn. Mater. 308, 214 (2007). https://doi.org/10.1016/j.jmmm.2006.05.032

    CAS  Article  Google Scholar 

  25. 25

    J. Z. Wei, Z. G. Song, Y. B. Yang, et al., AIP Adv. 4, 127113 (2014). https://doi.org/10.1063/1.4903773

    CAS  Article  Google Scholar 

  26. 26

    S. Kojima, K. Kojima, S. Mitani, and T. Kubo, AIP. Conf. Proc. 24, 768 (1975). https://doi.org/10.1063/1.30281

    Article  Google Scholar 

  27. 27

    J. J. Van Den Broek, H. Donkersloot, G. Van Tendeloo, and J. Van Landuyt, Acta Metall. 27, 1497 (1979). https://doi.org/10.1016/0001-6160(79)90172-X

    CAS  Article  Google Scholar 

  28. 28

    A. Chaturvedi, R. Yaqub, and I. Baker, Metals 4, 20 (2014). https://doi.org/10.3390/met4010020

    CAS  Article  Google Scholar 

  29. 29

    V. M. Gundyrev, M. A. Uimin, A. E. Ermakov, and B. Andreeva, Phys. Status Solidi A 91, 55 (1985). https://doi.org/10.1002/pssa.2210910152

    Article  Google Scholar 

  30. 30

    O. Obi, L. Burns, Y. Chen, et al., J. Alloys Compd. 582, 598 (2014). https://doi.org/10.1016/j.jallcom.2013.08.086

    CAS  Article  Google Scholar 

  31. 31

    P. Saravan, D. Deepika, J.-H. Hsuet al., RSC Adv. 5, 92406 (2015). https://doi.org/10.1039/c5ra16550d

    Article  Google Scholar 

  32. 32

    H. Fang, S. Kontos, J. Angstrom, et al., J. Solid State Chem. 237, 300 (2016). https://doi.org/10.1016/j.jssc.2016.02.031

    CAS  Article  Google Scholar 

  33. 33

    P. Saetang, T. Charoensuk, U. Boonyang, et al., Transact. Indian Inst. Met. 73, 929 (2020). https://doi.org/10.1007/s12666-020-01912-0

    CAS  Article  Google Scholar 

  34. 34

    D. Palanisamy, S. Singh, and C. Srivastava, Metallurg. Mater. Transact. A 47, 6555 (2016). https://doi.org/10.1007/s11661-016-3756-4

    CAS  Article  Google Scholar 

  35. 35

    Z. Shao, H. Zhao, J. Zeng, et al., AIP Adv. 7, 056213 (2017). https://doi.org/10.1063/1.4974277

    CAS  Article  Google Scholar 

  36. 36

    W. Lu, J. Niu, T. Wang, et al., J. Alloys Compd. 675, 163 (2016). https://doi.org/10.1016/j.jallcom.2016.03.098

    CAS  Article  Google Scholar 

  37. 37

    Z. Xiang, X. Wang, Y. Song, et al., J. Magn. Magn. Mater. 475, 479 (2019). https://doi.org/10.1016/j.jmmm.2018.12.003

    CAS  Article  Google Scholar 

  38. 38

    X. Tong, P. Sharma, and A. Makino, J. Phys. D: Appl. Phys. 3, 175001 (2020). https://doi.org/10.1088/1361-6463/ab7039

    CAS  Article  Google Scholar 

  39. 39

    N. Singh, R. Shyam, N. K. Upadhyay, and A. Dhar, IOP Conf. Ser.-Mater. Sci. Eng. 73, 012042 (2015). https://doi.org/10.1088/1757-899X/73/1/012042

    CAS  Article  Google Scholar 

  40. 40

    P. Saravanan, J. H. Hsu, V. T. P. Vinod, et al., Appl. Phys. Lett. 107, 192407 (2015). https://doi.org/10.1063/1.4935861

  41. 41

    K. P. Su, X. X. Chen, H. O. Wang, et al., Mater. Charact. 114, 263 (2016). https://doi.org/10.1016/j.matchar.2016.03.011

    CAS  Article  Google Scholar 

  42. 42

    D. Palanisamy, G. Madras, and K. Chattopadhyay, J. Magn. Magn. Mater. 439, 181 (2017). https://doi.org/10.1016/j.jmmm.2017.04.083

    CAS  Article  Google Scholar 

  43. 43

    J. Rial, E. M. Palmero, and A. Bollero, Engineer 6, 173 (2020). https://doi.org/10.1016/j.eng.2019.03.013

    CAS  Article  Google Scholar 

  44. 44

    J.-G. Lee, X.-L. Wang, Z.-D. Zhang, and C.-J. Choi, Thin Solid Films 519, 8312 (2011). https://doi.org/10.1016/j.tsf.2011.03.094

    CAS  Article  Google Scholar 

  45. 45

    P. Saravanan, V. T. P. Vinod, M. Cernik, et al., J. Magn. Magn. Mater. 374, 427 (2015). https://doi.org/10.1016/j.jmmm.2014.08.076

    CAS  Article  Google Scholar 

  46. 46

    H. Fang, J. Cedervall, D. Hedlund, et al., Sci. Rep. 8, 2525 (2018). https://doi.org/10.1038/s41598-018-20606-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    R. Madugundo, O. Koylu-Alkan, and G. C. Hadjipanayis, AIP Adv. 6, 056009 (2016). https://doi.org/10.1063/1.4943242

    CAS  Article  Google Scholar 

  48. 48

    D. Ernst, J. Tydings, and M. Pasnak, J. Appl. Phys. 36, 1241 (1965). https://doi.org/10.1063/1.1714187

    CAS  Article  Google Scholar 

  49. 49

    S. Zhao, Yu. Wu, Z. Jiao, et al., Phys. Rev. Appl. 11, 064008 (2019). https://doi.org/10.1103/PhysvApplied.11.064008

  50. 50

    R. McCurrie, J. Rickman, P. Dunk, and D. J. Hawkridge, IEEE Trans. Magn. 14, 682 (1978). https://doi.org/10.1109/TMAG.1978.1059950

    Article  Google Scholar 

  51. 51

    C. Yanar, J. M. K. Wiezorek, V. Radmilovic, and W. A. Soffa, Metall. Trans. A 8, 2413 (2002). https://doi.org/10.1007/s11661-002-0363-3

    Article  Google Scholar 

  52. 52

    D. Palanisamy, C. Srivastava, G. Madras, and K. Chattopadhyay, J. Mater. Sci. 52, 4109 (2017). https://doi.org/10.1007/s10853-016-0673-2

    CAS  Article  Google Scholar 

  53. 53

    S. F. Marenkin, A. N. Aronov, I. V. Fedorchenko, et al., RU Patent 2700896. Byul.Izobret. No. 27 (2019).

  54. 54

    V. M. Novotortsev, A. V. Kochura, S. F. Marenkin, et al., Rus. J. Inorg. Chem. 56, 1951 (2011). https://doi.org/10.1134/S0036023611120400

    CAS  Article  Google Scholar 

  55. 55

    S. F. Marenkin, A. I. Ril’, I. V. Fedorchenko, and V. V. Kozlov, Russ. J. Inorg. Chem. 65, (2020). https://doi.org/1092.10.31857/S0044457X20080115

  56. 56

    T. Klemmer, D. Hoydick, H. Okumura, et al., Scr. Metall. Mater. 33, 1793 (1995). https://doi.org/10.1016/0956-716X(95)00413-P

    CAS  Article  Google Scholar 

  57. 57

    Y. Kinemuchi, A. Fujita, and K. Ozaki, J. Chem. Soc., Dalton Trans. 45, 10936 (2016). https://doi.org/10.1039/c6dt00947f

    CAS  Article  Google Scholar 

  58. 58

    I. Janotova, P. Svec, Sr., P. Svec, et al., J. Alloys Compd. 707, 137 (2017). https://doi.org/10.1016/j.jallcom.2016.11.171

    CAS  Article  Google Scholar 

  59. 59

    W. Lu, J. Niu, T. Wang, K. Xia, et al., J. Alloys Compd. 685, 992 (2016). https://doi.org/10.1016/j.jallcom.2016.06.285

    CAS  Article  Google Scholar 

  60. 60

    A. D. Crisan, F. Vasiliu, R. Nicula, et al., Mater. Charact. 140, 1 (2018). https://doi.org/10.1016/j.matchar.2018.03.034

    CAS  Article  Google Scholar 

  61. 61

    R. Kobayashi, Y. Mitsui, R. Y. Umetsu, et al., Mater. Trans. 58, 1511 (2017). https://doi.org/10.2320/matertrans.MAW201709

    CAS  Article  Google Scholar 

  62. 62

    P. Krakhmalev, I. Yadroitsev, I. Baker, and I. Yadroitsava, Proc. CIRP 74, 64 (2018). https://doi.org/10.1016/j.procir.2018.08.031

  63. 63

    K. Anand, J. J. Pulikkotil, and S. Auluck, J. Alloys Compd. 601, 234 (2014). https://doi.org/10.1016/j.jallcom.2014.01.251

    CAS  Article  Google Scholar 

  64. 64

    I. A. Radulov, Jr., V. V. Popov, A. Koptyug, et al., Add. Manuf. 30, 100787 (2019). https://doi.org/10.1016/j.addma.2019.100787

    CAS  Article  Google Scholar 

  65. 65

    Y. Mitsui, R. Kobayashi, Y. Takanaga, et al., IEEE Trans. Magn. 55, 2100704 (2019). https://doi.org/10.1109/TMAG.2018.2860559

    Article  Google Scholar 

  66. 66

    M. J. Lucis, T. E. Prost, X. Jiang, et al., Metals 4, 130 (2014). https://doi.org/10.3390/met4020130

    CAS  Article  Google Scholar 

  67. 67

    H. Zhao, W. Y. Yang, Z. Y. Shao, et al., J. Alloys Compd. 680, 14 (2016). https://doi.org/10.1016/j.jallcom.2016.04.074

    CAS  Article  Google Scholar 

  68. 68

    J. Park, H.-D. Qian, P.-Z. Si, et al., IEEE Trans. Magn. 54, 2100203 (2018). https://doi.org/10.1109/TMAG.2017.2765620

    Article  Google Scholar 

  69. 69

    T. Mix, F. Bittner, K.-H. Müller, et al., Acta Mater. 128, 160 (2017). https://doi.org/10.1016/j.actamat.2017.02.011

    CAS  Article  Google Scholar 

  70. 70

    P. Saravananan, J.-H. Hsub, V. T. P. Vinodc, et al., J. Alloys Compd. 695, 364 (2017). https://doi.org/10.1016/j.jallcom.2016.10.184

    CAS  Article  Google Scholar 

  71. 71

    Z. Xiang, C. Xu, T. Wang, et al., Intermetallics 101, 13 (2018). https://doi.org/10.1016/j.intermet.2018.07.003

    CAS  Article  Google Scholar 

  72. 72

    S. Zhao, Y. Wu, C. Zhang, et al., J. Alloys Compd. 755, 257 (2018). https://doi.org/10.1016/j.jallcom.2018.04.318

    CAS  Article  Google Scholar 

  73. 73

    Z. Xiang, Y. Song, B. Deng, et al., J. Alloys Compd. 783, 416 (2019). https://doi.org/10.1016/j.jallcom.2018.12.350

    CAS  Article  Google Scholar 

  74. 74

    S. Zhao, Yu. Wu, J. Wang, et al., J. Magn. Magn. Mater. 483, 164 (2019). https://doi.org/10.1016/j.jmmm.2019.03.103

    CAS  Article  Google Scholar 

  75. 75

    S. Shafeie, H. Fang, D. Hedlund, et al., J. Solid State Chem. 274, 229 (2019). https://doi.org/10.1016/j.jssc.2019.03.035

    CAS  Article  Google Scholar 

  76. 76

    P. Z. Si, C. J. Choi, J. Park, et al., AIP Adv. 10, 015320 (2020). https://doi.org/10.1063/1.5130064

    CAS  Article  Google Scholar 

  77. 77

    P. Saravanan, S. Saju, V. T. P. Vinod, and M. Cernic, J. Mater. Sci. Mater. Electron. 31, 9878 (2020). https://doi.org/10.1007/s10854-020-03532-2

    CAS  Article  Google Scholar 

  78. 78

    I. P. Suzdaleva, Yu. V. Maksimova, V. K. Imshennik, et al., Nanotechnol. Russ. 4, 467 (2009). https://doi.org/10.1134/S1995078009070076

    Article  Google Scholar 

  79. 79

    G. H. Wantenaar, S. J. Campbell, D. H. Chaplin, et al., Phys. Rev. Lett. 37, 1767 (1976). https://doi.org/10.1103/PhysRevLett.37.1767

    CAS  Article  Google Scholar 

  80. 80

    S. Bance, F. Bittner, T. G. Woodcock, et al., Acta Mater. 131, 48 (2017). https://doi.org/10.1016/j.actamat.2017.04.004

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research, theme no. 0088-2014-0003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. Ril’.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marenkin, S.F., Ril’, A.I. Al–Mn Hard Magnetic Alloys as Promising Materials for Permanent Magnets (Review). Russ. J. Inorg. Chem. 65, 2007–2019 (2020). https://doi.org/10.1134/S003602362014003X

Download citation

Keywords

  • : hard magnets
  • permanent magnets
  • aluminum–manganese alloys
  • spin-valve structures