Skip to main content
Log in

Computer Design of Two-Dimensional Monolayers with Octahedral 1,6-Carborane Units

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The structure and properties of two-dimensional monolayers composed of 1,6-carboranes have been studied by means of density functional theory calculations with periodic boundary conditions. Calculations of the phonon dispersion spectrum and band structure have shown that the 2D monolayers are dynamically stable and refer to indirect band gap semiconductors with a band gap of ~2.5 eV. Calculations of mechanical properties demonstrate that Young’s modulus for 2D 1,6-carborane nanosheets is lower than that for the monolayer of hexagonal boron nitride (h-BN) but exceeds that for the MoS2 monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. J. Wu, W. Pisula, and K. Müllen, Chem. Rev. 107, 718 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. A. A. Balandin, S. Ghosh, W. Bao, et al., Nano Lett. 8, 902 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. I. Meric, M. Y. Han, A. F. Young, et al., Nat. Nanotechnol. 3, 654 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).

    Article  CAS  Google Scholar 

  7. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. A. Gupta, T. Sakthivel, and S. Seal, Prog. Mater. Sci. 73, 44 (2015).

    Article  CAS  Google Scholar 

  9. S. Z. Butler, S. M. Hollen, L. Cao, et al., ACS Nano 7, 2898 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. A. Molle, J. Goldberger, M. Houssa, et al., Nat. Mater. 16, 163 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Z. A. Piazza, H.-S. Hu, W.-L. Li, et al., Nat. Commun. 5, 3113 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. H. Tang and S. Ismail-Beigi, Phys. Rev. Lett. 99, 115 501 (2007).

    Article  CAS  Google Scholar 

  13. X.-F. Zhou, X. Dong, A. R. Oganov, et al., Phys. Rev. Lett. 112, 085 502 (2014).

    Article  CAS  Google Scholar 

  14. E. S. Penev, S. Bhowmick, A. Sadrzadeh, et al., Nano Lett. 12, 2441 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. X. Wu, J. Dai, Y. Zhao, et al., ACS Nano 6, 7443 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. T. Ogitsu, E. Schwegler, G. Galli, et al., Chem. Rev. 113, 3425 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. X. Wu, J. Dai, Y. Zhao, et al., ACS Nano 7, 880 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. J. Dai, Y. Zhao, X. Wu, et al., J. Phys. Chem. Lett. 4, 561 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. X. Yu, L. Li, X.-W. Xu, et al., J. Phys. Chem. C 116, 20 075 (2012).

    Article  CAS  Google Scholar 

  20. E. S. Penev, A. Kutana, and B. I. Yakobson, Nano Lett. 16, 2522 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. R. M. Minyaev and V. E. Avakyan, Dokl. Chem. 434, 253 (2010). https://doi.org/10.1134/S0012500810100010

    Article  CAS  Google Scholar 

  22. X.-L. Sheng, Q.-B. Yan, F. Ye, et al., Phys. Rev. Lett. 106, 155 703 (2011).

    Article  CAS  Google Scholar 

  23. R. M. Minyaev, Russ. Chem. Bull. 61, 1673 (2012). https://doi.org/10.1007/S11172-012-0232-1

    Article  CAS  Google Scholar 

  24. I. V. Getmanskii, R. M. Minyaev, D. V. Steglenko, et al., Angew. Chem., Int. Ed. 56, 10 118 (2017).

    Article  CAS  Google Scholar 

  25. A. R. Genady, Eur. J. Med. Chem. 44, 409 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. V. M. Sharapov, S. V. Mirnov, S. A. Grashin, et al., J. Nucl. Mater. 220222, 730 (1995).

  27. A. I. Meshcheryakov, D. K. Akulina, G. M. Batanov, et al., Plasma Phys. Rep. 31, 452 (2005). https://doi.org/10.1134/1.1947330

    Article  CAS  Google Scholar 

  28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16, Rev. A.03, Gaussian, Inc., Wallingford CT, 2016.

    Google Scholar 

  29. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (558).

  30. G. Kresse and J. Hafner, Phys. Rev. B 49, 14 251 (1994).

    Article  Google Scholar 

  31. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11 169 (1996).

    Article  Google Scholar 

  32. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  33. P. E. Blöchl, Phys. Rev. B 50, 17 953 (1994).

    Article  Google Scholar 

  34. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  35. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, et al., Phys. Rev. Lett. 100, 136 406 (2008).

    Article  CAS  Google Scholar 

  36. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  37. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).

    Article  CAS  Google Scholar 

  38. M. Koichi and I. Fujio, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  CAS  Google Scholar 

  39. V. S. Mastryukov, O. V. Dorofeeva, L. V. Vilkov, et al., J. Chem. Soc., Chem. Commun., 276 (1973).

  40. E. A. McNeill, K. L. Gallaher, F. R. Scholer, et al., Inorg. Chem. 12, 2108 (1973).

    Article  CAS  Google Scholar 

  41. R. A. Beaudet and R. L. Poynter, J. Chem. Phys. 53, 1899 (1970).

    Article  CAS  Google Scholar 

  42. M. Buehl and P. v. R. Schleyer, J. Am. Chem. Soc. 114, 477 (1992).

    Article  CAS  Google Scholar 

  43. M. L. McKee, J. Am. Chem. Soc. 114, 879 (1992).

    Article  CAS  Google Scholar 

  44. V. G. Slutsky, M. Hofmann, and P. v. R. Schleyer, Mendeleev Commun. 4, 12 (1994).

    Article  Google Scholar 

  45. J. W. Bausch, G. K. S. Prakash, and R. E. Williams, Inorg. Chem. 31, 3763 (1992).

    Article  CAS  Google Scholar 

  46. E. D. Jemmis and G. Subramanian, J. Phys. Chem. 98, 9222 (1994).

    Article  CAS  Google Scholar 

  47. T. Onak, J. Jaballas, and M. Barfield, J. Am. Chem. Soc. 121, 2850 (1999).

    Article  CAS  Google Scholar 

  48. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153 401 (2007).

    Article  CAS  Google Scholar 

  49. B. Paulus, P. Fulde, and H. Stoll, Phys. Rev. B 54, 2556 (1996).

    Article  CAS  Google Scholar 

  50. Y. Jiao, F. Ma, J. Bell, et al., Angew. Chem., Int. Ed. 55, 10 292 (2016).

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 16-13-10050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Steglenko.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steglenko, D.V., Zaitsev, S.A., Minyaev, R.M. et al. Computer Design of Two-Dimensional Monolayers with Octahedral 1,6-Carborane Units. Russ. J. Inorg. Chem. 64, 1031–1034 (2019). https://doi.org/10.1134/S0036023619080163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619080163

Keywords:

Navigation