Skip to main content
Log in

Photocatalytic Studies of Composite Ferrite Nanoparticles

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Composite ferrite nanoparticles Co1 – xZnxFe2O4/Ni1 – xZnxFe2O4, x = 0.1–0.5) have been synthesized by co-precipitation method and annealed at temperature of 800°C for 2 h in air. The synthesized samples have been characterized by X-ray powder diffraction, FE-SEM/EDS, and UV-Vis spectroscopy. The prepared nanoparticles exhibit a cubic crystal structure observed from X-ray powder diffraction experiment. It has been observed that the Co0.7Zn0.3Fe2O4/Ni0.7Zn0.3Fe2O4 nanoparticles exhibit higher optical absorbance spectrum at 400 to 800 nm wavelength due to its smaller crystal size (100.8 nm) as compared to the composite ferrite nanoparticles Co0.9Zn0.1Fe2O4/Ni0.9Zn0.1Fe2O4 (176.2 nm), Co0.8Zn0.2Fe2O4/Ni0.8Zn0.2Fe2O4 (134.3 nm), Co0.6Zn0.4Fe2O4/Ni0.6Zn0.4Fe2O4 (165.6 nm), and Co0.5Zn0.5Fe2O4/Ni0.5Zn0.5Fe2O4 (245.6 nm) nanoparticles. The photocatalytic activity of composite ferrite nanoparticles have been studied by performing the decomposition of methylene blue dye solution under UV light irradiation within 0 to 4 h. The methylene blue dye solution was considerably photodegraded by Co0.7Zn0.3Fe2O4/Ni0.7Zn0.3Fe2O4 photocatalyst under UV irradiation within 0–4 h to the efficiency of 96%. The pseudo first order rate constant of the degradation has been found to be 0.0144 S–1. The degradation mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. Masakazu, T. Masato, I. Keita, et al., in Semiconductor Photochemistry and Photophysics (Marcel Dekker, 2003).

    Google Scholar 

  2. A. Masakazu, T.Masato, I. Keita, et al., Curr. Opin. Solid State Mater. Sci. 6, 381 (2002). https://doi.org/10.1016/S1359-0286(02)00107-9

    Article  Google Scholar 

  3. H. R. Pant, C.H. Park, B. Pant, et al., Ceram. Int. 38, 2943 (2012). https://doi.org/10.1016/j.ceramint.2011.11.071

    Article  CAS  Google Scholar 

  4. S. B. Sun, X. T. Chang, X. J. Li, and Z. J. Li, Ceram. Int. 39, 5197 (2013). https://doi.org/10.1016/j.ceramint.2012.12.018

    Article  CAS  Google Scholar 

  5. M. H. Habibi and M.H. Rahmati, Spectrochim. Acta A 133, 13 (2014). https://doi.org/10.1016/j.saa.2014.04.110

    Article  CAS  Google Scholar 

  6. L. Zhong and F. Haghighat, Build. Environ. 91, 191 (2015). doi.org/https://doi.org/10.1016/j.buildenv.2015.01.033

    Article  Google Scholar 

  7. Ni. Meng, K. H. L. Michael, Y. C. L. Dennis, and K. Sumath, Renew. Sust. Energy Rev. 11, 401 (2007) https://doi.org/10.1016/j.rser.2005.01.009

    Article  CAS  Google Scholar 

  8. H. M. Coleman, K. Chiang, and R. Amal, Chem. Eng. J. 113, 65 (2005).https://doi.org/10.1016/j.cej.2005.07.014

    Article  CAS  Google Scholar 

  9. C. H. Wu, Chemosphere 57, 601 (2004) https://doi.org/10.1016/j.chemosphere.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  10. D. L. Liao, C. A. Badour, and B. Q. Liao, J. Photochem. Photobiol. 194, 11 (2008). https://doi.org/10.1016/j.jphotochem.2007.07.008

    Article  CAS  Google Scholar 

  11. N. Dehghan-Niarostami, F. Taleshi, A. Pahlavan, et al., Int. Nano Lett. 4, 121 (2014). https://doi.org/10.1007/s40089-014-0121-8

    Article  CAS  Google Scholar 

  12. C. Borgohain, K. K. Senapati, K. C. Sarma, and P. Phukan, J. Mol. Catal. A: Chem. 363364, 495 (2012). https://doi.org/10.1016/j.molcata.2012.07.032

  13. C. Singh, S. Jauhar, V. Kumar, et al., Mater. Chem. Phys. 156, 188 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.046

    Article  CAS  Google Scholar 

  14. G. Fan, J. Tong, and F. Li, Ind. Eng. Chem. Res. 51, 13639 (2012). https://doi.org/10.1021/ie201933g

    Article  CAS  Google Scholar 

  15. R. Sharma, S. Bansal, and S. Singhal, RSC Adv. 8, 1 (2015). doi:

  16. A. Afkhami, S. Sayari, R. Moosavi, and T. Madrakian, J. Indust. Engin. Chem. 21, 920 (2015). https://doi.org/10.1016/j.jiec.2014.04.033

    Article  CAS  Google Scholar 

  17. P. Xiong, Y. Fua, L. Wang, and X. Wang, Chem. Engin. J. 196196, 149 (2012). https://doi.org/10.1016/j.cej.2012.05.007

  18. J. Chen, T. Chen, Li. W. Lai, et al., Materials 8, 4273 (2015). https://doi.org/10.3390/ma8074273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. T. Assar, H. F. Abosheiasha, and M. K. El Nimr, J. Magn. Magn.Mater. 354, 136 (2014). https://doi.org/10.1016/j.jmmm.2013.10.022

    Article  CAS  Google Scholar 

  20. S. F. Mansour and M. A. Elkestawy, Ceram. Int. 37, 1175 (2011). doi.org/https://doi.org/10.1016/j.ceramint.2010.11.038

    Article  CAS  Google Scholar 

  21. H. Zhu, S. Zhang, Y. X. Huang, et al., Nano Lett. 13, 2947 (2013). https://doi.org/10.1021/nl4013248

    Article  CAS  PubMed  Google Scholar 

  22. J. Joseph, R. B. Tangsali, V. P. Mahadevan Pillai, et al., Mater. Res. Bull. 61, 475 (2014). https://doi.org/10.1016/j.materresbull.2014.10.061

    Article  CAS  Google Scholar 

  23. S. A. Morrison, C. L. Cahill, S. Calvin, et al., J. Appl. Phys. 95, 6392 (2004). https://doi.org/10.1063/1.1715132

    Article  CAS  Google Scholar 

  24. H. Malika, A. Mahmood, K. Mahmood, et al., Ceram. Int. 40, 9439 (2014). https://doi.org/10.1016/j.ceramint.2014.02.015

    Article  CAS  Google Scholar 

  25. I. Sharifia, H. Shokrollahia, M. M. Doroodmand, and R. Safia, J. Magn. Magn. Mater. 324, 1854 (2012). https://doi.org/10.1016/j.jmmm.2012.01.015

    Article  CAS  Google Scholar 

  26. D. Zou, D. Yan, L. Xiao, and Y. Dong, Surf. Coat. Technol. 202, 1928 (2008). https://doi.org/10.1016/j.surfcoat.2007.08.022

    Article  CAS  Google Scholar 

  27. C. Singh, S. Jauhar, V. Kumar, et al., Mater. Chem. Phys. 156, 188 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.046

    Article  CAS  Google Scholar 

  28. M. S. Anwar, F. Ahmed, and B. H. Koo, Acta Mater. 71, 100(2014). https://doi.org/10.1016/j.actamat.2014.03.002

    Article  CAS  Google Scholar 

  29. M. H. Habibi and J. Parhizkar, Spectrochim. Acta Part A: Mol. Biomol. Spect. 150, 879 (2015). https://doi.org/10.1016/j.saa.2015.06.040

    Article  CAS  Google Scholar 

  30. H. Zhang, G. Chen, and D. W. Bahnemann, J. Mater. Chem. 19, 5089 (2009). https://doi.org/10.1039/B821991E

    Article  CAS  Google Scholar 

  31. A. S. Ahmed, M. M. Shafeeq, M. L. Singla, et al., J. Lumin. 131, 1 (2011). https://doi.org/10.1016/j.jlumin.2010.07.017

  32. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  33. S. Valencia, J. M Marin, and G. Restrepo, Open Mater. Sci. J. 4, 9 (2009). https://doi.org/10.2174/1874088X01004010009

    Article  Google Scholar 

  34. R. Elilarassi and G. Chandrasekaran, J Mater Sci. Mater. Electron. 21, 1168 (2010). https://doi.org/10.1007/s10854-009-0041-y

    Article  CAS  Google Scholar 

  35. O. Yayapao, T. Thongtem, A. Phuruangrat, and S. Thongtem, J. Alloys Compd. 576, 72 (2013). https://doi.org/10.1016/j.jallcom.2013.04.133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rahman.

SUPPLEMENTARY MATERIALS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Jayaganthan, R. Photocatalytic Studies of Composite Ferrite Nanoparticles. Russ. J. Inorg. Chem. 64, 946–954 (2019). https://doi.org/10.1134/S0036023619070131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619070131

Keywords:

Navigation