Skip to main content
Log in

Thermodynamic Properties of Monoclinic Samarium Orthotantalate M-SmTaO4

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The isobaric heat capacity of samarium orthotantalate M-SmTaO4 was measured by adiabatic and differential scanning calorimetry in the range 17–1115 K. Smoothed heat capacity values were used to calculate thermodynamic functions (entropy, enthalpy increment, and reduced Gibbs free energy) with the contribution from low-temperature (<17 K) magnetic transformations being ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Z. Forbes, M. Nyman, M. A. Rodriguez, and A. Navrotsky, J. Solid State Chem. 183, 2516 (2010). doi 10.1016/j.jssc.2010.08.024

    Article  CAS  Google Scholar 

  2. V. V. Molchanov, L. M. Plyasova, S. V. Bogdanov, and M. G. Zuev, Inorg. Mater. 40, 73 (2004). doi 10.1023/B:INMA.0000012182.99092.6b

    Article  CAS  Google Scholar 

  3. B. Li, Z. Gu, J. Lin, and M.-Z. Su, Mater. Res. Bull. 35, 1921 (2000). doi 10.1016/S0025-5408(00)00404-9

    Article  CAS  Google Scholar 

  4. H. Yang, F. Peng, Q. Zhang, et al., Cryst. Eng. Commun. 16, 2480 (2014). doi 10.1039/c3ce42350f

    Article  CAS  Google Scholar 

  5. G. Gu, X. Xu, X. Liu, et al., J. Sol-Gel Sci. Technol. 35, 193 (2005). doi 10.1007/s109

    Article  CAS  Google Scholar 

  6. J. Wang, H. Y. Chong, R. Zhou, and J. Feng, Scr. Mater. 126, 24 (2017). doi 10.1016/j.scriptamat. 2016.08.019

    Article  CAS  Google Scholar 

  7. Y. Shen, R. M. Leckie, C. G. Levi, and D. R. Clarke, Acta Mater. 58, 4424 (2010). doi 10.1016/j.actamat. 2010.04.040

    Article  CAS  Google Scholar 

  8. S. Raghavan, H. Wang, W. D. Porter, et al., Acta Mater. 49, 169 (2001). doi 10.1016/S1359-6454(00)00295-0

    Article  CAS  Google Scholar 

  9. S. Shian, P. Sarin, M. Gurak, et al., Acta Mater. 69, 196 (2014). doi 10.1016/j.actamat.2014.01.054

    Article  CAS  Google Scholar 

  10. M. A. Ryumin, E. G. Sazonov, V. N. Gus’kov, et al., Inorg. Mater., 52, 1149 (2016). doi 10.1134/S0020168516110145

    Article  CAS  Google Scholar 

  11. M. A. Ryumin, E. G. Sazonov, V. N. Gus’kov, et al., Inorg. Mater., 53, 728 (2017). doi 10.1134/S0020168517070147

    Article  CAS  Google Scholar 

  12. Atomic Weights and Isotopic Composition with Relative Atomic Masses. http://www.nist.gov/pml/data/comp.cfm.

  13. V. M. Gurevich and V. G. Khlyustov, Geokhimiya 6, 829 (1979).

    Google Scholar 

  14. S. A. Mather and P. K. Davies, J. Am. Ceram. Soc. 78, 2737 (1995). doi 10.1111/j.1151-2916.1995.tb08049.x

    Article  CAS  Google Scholar 

  15. P. G. Gagarin, A. V. Tyurin, V. N. Guskov, et al., Inorg. Mater. 53, 619 (2017). doi 10.1134/S0020168517060048

    Article  CAS  Google Scholar 

  16. L. Brixner and H. Chen, J. Electrochem. Soc. 13, 2435 (1983). doi 10.1149/1.2119609

    Article  Google Scholar 

  17. P. A. Arsen’ev, V. B. Glushkova, et al., Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  18. A. Fujita, H. Matsushita, and A. Katsui, Mater. Sci. Forum 534–536, 1069 (2007). 10.4028/www.scientific. net/MSF.534-536.1069.

    Google Scholar 

  19. S. Wang, M. Jiang, L. Gao, et al., Materials 9, 55 (2016). doi 10.3390/ma9010050

    Article  CAS  PubMed Central  Google Scholar 

  20. K. P. F. Siqueira, G. B. Carvalho, and A. Dias, J. Chem. Soc., Dalton Trans. 40, 9454 (2011). doi 10.1039/C1DT11129A

    Article  CAS  Google Scholar 

  21. E. F. Westrum, R. Jr. Burriel, J. B. Gruber, et al., J. Chem. Phys. 91, 4838 (1989). doi 10.1063/1.456722

    Article  CAS  Google Scholar 

  22. K. S. Gavrichev, M. A. Ryumin, G. E. Nikiforova, et al., Russ. J. Gen. Chem. 87, 383 (2017). doi 10.1134/S1070363217030343

    Article  Google Scholar 

  23. C. G. Maier and K. K. Kelley, J. Am. Chem. Soc. 54, 3243 (1932). doi 10.1021/ja01347a029

    Article  CAS  Google Scholar 

  24. J. Leitner, P. Chuchvalec, D. Sedmidubsky, et al., Thermochim. Acta 395, 27 (2003). doi 10.1016/S0040-6031(02)00177-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Gus’kov.

Additional information

Original Russian Text © A.V. Tyurin, A.V. Khoroshilov, V.N. Gus’kov, G.E. Nikiforova, L.Kh. Baldaev, K.S. Gavrichev, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 12, pp. 1583–1588.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyurin, A.V., Khoroshilov, A.V., Gus’kov, V.N. et al. Thermodynamic Properties of Monoclinic Samarium Orthotantalate M-SmTaO4. Russ. J. Inorg. Chem. 63, 1599–1604 (2018). https://doi.org/10.1134/S0036023618120215

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618120215

Keywords

Navigation