Skip to main content
Log in

Synthesis, Characterization and Optical Properties of BaMoO4 Synthesized by Microwave Induced Plasma Method

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

BaMoO4 crystals were synthesized by a 900 W microwave induced plasma process (MIP) for 40, 60, 120 and 140 min. Phase, morphology, vibrational mode and energy gap were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and UV-visible spectroscopy. In this research, the phase and morphology of product were influenced by microwave heating time. The sample processed for 140 min shows spherical particles tetragonal BaMoO4 phase with size of 200–700 nm in diameter. BaMoO4 with band gap of 3.35 eV shows a blue emission wavelength at 440 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mann and G.A. Ozin, Nature 382, 313 (1996).

    Article  CAS  Google Scholar 

  2. S. Mann, Angew. Chem. Int. Ed. 39, 3392 (2000).

    Article  CAS  Google Scholar 

  3. Y. G. Sun and Y. N. Xia, Science 298, 2176 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. J. Zhang and L. Gao, Mater. Lett. 61, 3571 (2007).

    Article  CAS  Google Scholar 

  5. A. P. de Azevedo Marques, D. M. A. de Melo, C. A. Paskocimas, P. S. Pizani, M. R. Joya, E. R. Leite, and E. Longo, J. Solid State Chem. 179, 671 (2006).

    Article  CAS  Google Scholar 

  6. V. Thangadurai, C. Knittlmayer, and W. Weppner, Mater. Sci. Eng. B 106, 228(2004).

    Article  CAS  Google Scholar 

  7. J. W. Yoon and J. H. Ryu, Mater. Sci. Eng. B 127, 154 (2006).

    Article  CAS  Google Scholar 

  8. G. Blasse and G. J. Dirksen, J. Solid State Chem. 26, 124 (1981).

    Article  Google Scholar 

  9. P. Afanasiev, Mater. Lett. 61, 4622 (2007).

    Article  CAS  Google Scholar 

  10. B. Xie, Y. Jiang, J. Wu, S. W. Yuan, Y. C. Yu, and Y. T. Qian, J. Cryst. Growth 235, 283 (2002).

    Article  CAS  Google Scholar 

  11. C. Pupp, R. Yamdagni, and R. F. Porter, J. Inorg. Nucl. Chem. 31, 2021 (1969).

    Article  CAS  Google Scholar 

  12. Y. Sun, J. Ma, J. Fang, C. Gao, and Z. Liu, Ceram. Int. 37, 683 (2011).

    Article  CAS  Google Scholar 

  13. T. T. Basiev, A. A. Sobol, Y. U. K Voronko, and P. G. Zverev, Opt. Mater. 15, 205 (2000).

    Article  CAS  Google Scholar 

  14. G. Hitoki, T. Takata, S. Ikeda, M. Hara, J. N. Kondo, M. Kakihana, and K. Domen, Catal. Today 63, 175 (2000).

    Article  CAS  Google Scholar 

  15. C S. Lim, J. Ceram. Proc. Res. 12, 544 (2011).

    Google Scholar 

  16. Powder Diffraction File (JCPDS–ICDD, 2001).

  17. D. J. Brooks and R. E. Douthwaite, Rev. Sci. Instum. 75 (12) (2004).

    Google Scholar 

  18. F. T. Mackenzie and J. A. Mackenzie, Our Changing Planet (Prentice-Hall, Upper Saddle River, N.J., 1995).

    Google Scholar 

  19. Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, and V. Foltin, J. Mol. Spectros. 243, 194 (2007).

    Article  CAS  Google Scholar 

  20. T. J. B. Holland and S. A. T. Redfern, Mineral. Mag. 61, 65 (1997).

    Article  CAS  Google Scholar 

  21. L. S. Cavalcante, J. C. Sczancoski, R. L. Tranquilin, M. R. Joya, P. S. Pizani, J. A. Varela, and E. Longo, J. Phys. Chem. Solids 69, 2674 (2008).

    Article  CAS  Google Scholar 

  22. S. Takai, S. Touda, K. Oikawa, K. Mori, S. Torii, S. Torii, T. Kamiyama, and T. Esaka, Solid State Ion. 148, 123 (2007).

    Article  Google Scholar 

  23. X. Wu, J. Du, H. Li, M. Zhang, B. Xi, H. Fan, Y. Zhu, and Y. Qian, J. Solid State Chem. 180, 3288 (2007).

    Article  CAS  Google Scholar 

  24. J. Van Tol and J. H. Van Der Waals, Mol. Phys. 88, 803 (1996).

    CAS  Google Scholar 

  25. J. C. Sczancoski, L. S. Cavalcante, N. L. Marana, R. O. da Silva, R. L. Tranquilin, M. R. Joya, P. S. Pizani, J. A. Varela, J. R. Sambrano, M. Siu Li, E. Longo, and J. Andre’s, Curr. Appl. Phys. 10, 614 (2010).

    Article  Google Scholar 

  26. S. S. Ding, M. Lei, H. Xiao, G. Liu, Y. C. Zhang, K. Huang, C. Liang, Y. J. Wang, R. Zhang, D. Y. Fan, H. J. Yang, and Y. G. Wang, J. Alloys Compd. 579, 549 (2013).

    Article  CAS  Google Scholar 

  27. A. P. A. Marques, F. C. Picon, D. M. A. Melo, P. S. Pizani, E. R. Leite, and J. A. Varela, J. Fluoresc. 18, 51 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. A. P. A. Marques, D. M. A. de Melo, E. Longo, C. A. Paskocimas, P. S. Pizani, and E. R. Leite, J. Solid State Chem. 178, 2346 (2005).

    Article  CAS  Google Scholar 

  29. C. Zhang, L. Zhang, C. Song, G. Jia, S. Huo, and S. Shen, J. Alloys Compd. 589, 185 (2014).

    Article  CAS  Google Scholar 

  30. R. Adhikari, G. Gyawali, T. H. Kim, T. Sekino, and S. W. Lee, Mater. Lett. 91, 294 (2013).

    Article  CAS  Google Scholar 

  31. G. Burns, Solid State Physics (Academic Press, New York, 1985).

    Google Scholar 

  32. J. K. Thomas, S. Vidya, S. Solomon, and K. Joy, Mater. Sci. Eng. 23, 012031 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arrak Klinbumrung.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinbumrung, A., Phuruangrat, A., Thongtem, T. et al. Synthesis, Characterization and Optical Properties of BaMoO4 Synthesized by Microwave Induced Plasma Method. Russ. J. Inorg. Chem. 63, 725–731 (2018). https://doi.org/10.1134/S0036023618060141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618060141

Navigation