Skip to main content
Log in

Production of Zinc-Doped Yttrium Ferrite Nanopowders by the Sol–Gel Method

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Zinc-doped yttrium orthoferrite nanocrystals having the perovskite structure were prepared by coprecipitation of yttrium, zinc, and iron hydroxides. The limiting zinc doping level of the yttrium ferrite to yield a ZnFe2O4 spinel second phase was determined. The yttrium orthoferrite particle size was found to be a nonmonotone function of dopant concentration. The specific magnetization of yttrium ferrite nanocrystals increases with increasing zinc doping level from 0.242 A m2/kg (in undoped YFeO3) to 1.327 A m2/kg (the ratio (1–x)YFeO3: xZn (x = 0.4)) at Т = 300 K in 1250-kA/m field. A zinc ferrite impurity in samples enhances the ferromagnetism of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Mikhaylov and O.S. Vasiljeva, Bull. East Sib. Sci. Center SB RAMS, No. 3, 18 (2008).

    Google Scholar 

  2. V. V. Kiroshka, N. V. Repin, V. M. Nadutov, et al., Nanosist., Nanomater., Nanotekhnol. 8, 787 (2010).

    CAS  Google Scholar 

  3. D. A. Baranov and S. P. Gubin, Radioelektronika. Nanosist. Inform. Tekhnol. 1 (1–2), 129 (2009).

    Google Scholar 

  4. I. Kuryliszyn-Kudelska, B. Hadzic, D. Sibera, et al., Acta Phys. Polonica A 119, 689 (2011). doi 10.12693/APhysPolA.119.689

    Article  CAS  Google Scholar 

  5. F. D. Stoian and S. Holotescu, J. Phys.: Conf. Ser. 547, 012044 (2014). doi 10.1088/1742-6596/547/1/012044

    Google Scholar 

  6. R. Karthick, K. Ramachandran, and R. Srinivasan, Nanosystems: Phys., Chem., Math. 7, 624 (2016). doi 10.17586/2220-8054-2016-7-4-624-628

    CAS  Google Scholar 

  7. I. Nkurikiyimfuraa, Y. Wanga, and Z. Pana, Renewable Sustainable En. Rev., 548 (2012). doi 10.1016/j.rser. 2012.12.039

  8. A. T. Nguyen, O. V. Almjasheva, I. Ya. Mittova, et al., Inorg. Mater. 45, 1304 (2009). doi 10.1134/S0020168509110211

    Article  CAS  Google Scholar 

  9. V. I. Popkov, O. V. Almjasheva, M. P. Schmidt, and V. V. Gusarov, Russ. J. Gen. Chem. 85, 1370 (2015). doi 10.1134/S107036321506002X

    Article  CAS  Google Scholar 

  10. A. T. Nguyen, Ph. H. Nh. Phan, I. Ya. Mittova, et al., Nanosystems: Phys., Chem., Math. 7, 459 (2016). doi 10.17586/2220-8054-2016-7-3-459-4

    CAS  Google Scholar 

  11. JCPDS PCPDFWIN: A Windows Retrieval/Display Program for Accessing the ICDD PDF-2 File (ICDD, 1997).

  12. A. L. Patterson, Phys. Rev. 56, 978 (1939). doi 10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  13. V. T. Dinh, V. O. Mittova, O. V. Almjasheva, and I. Ya. Mittova, Inorg. Mater. 47, 1141 (2011). doi 10.1134/S0020168511100037

    Article  CAS  Google Scholar 

  14. A. T. Nguen, I. Ya. Mittova, and O. V. Al’myasheva, Russ. J. Appl. Chem. 82, 1915 (2009). doi 10.1134/S1070427209110020

    Article  CAS  Google Scholar 

  15. R. D. Shanon, Acta Crystallogr., Sect. A, 32, 751 (1976). doi 10.1107/S0567739476001551

    Article  Google Scholar 

  16. L. A. Reznitskii, The Chemical Bond and Transformations in Oxides (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  17. O. V. Almjasheva, A. V. Smirnov, B. A. Fedorov, et al., Russ. J. Gen. Chem. 84, 804 (2014). doi 10.1134/S1070363214050028

    Article  CAS  Google Scholar 

  18. V. V. Gusarov, Nanosystems: Phys., Chem., Math. 4, 352 (2013).

    Google Scholar 

  19. A. A. Komlev and E. F. Vilezhaninov, Russ. J. Appl. Chem. 86, 1344 (2013). doi 10.1134/S1070427213090059

    Article  CAS  Google Scholar 

  20. O. V. Almjasheva, B. A. Fedorov, A. V. Smirnov, and V. V. Gusarov, Nanosystems: Phys., Chem., Math. 1, 26 (2010).

    Google Scholar 

  21. M. V. Knurova, I. Ya. Mittova, N. S. Perov, et al., Zh. Neorg. Khim. 62, 288 (2017). doi 10.7868/S0044457X17030084

    Google Scholar 

  22. A. T. Nguyen, I. Ya. Mittova, D. O. Solodukhin, et al., Russ. J. Inorg. Chem. 59, 40 (2014). doi 10.1134/S0036023614020156

    Article  CAS  Google Scholar 

  23. G. B. Sergeev, Russ. Chem. J. 46, 22 (2002).

    CAS  Google Scholar 

  24. E. A. Tugova, V. F. Popova, I. A. Zvereva, and V. V. Gusarov, Russ. J. Gen. Chem. 77, 979 (2007). doi 10.1134/S1070363207060023

    Article  CAS  Google Scholar 

  25. E. A. Tugova, N. P. Bobrysheva, A. A. Selyutin, and V. V. Gusarov, Russ. J. Gen. Chem. 78, 2000 (2008). doi 10.1134/S1070363208110029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Berezhnaya.

Additional information

Original Russian Text © M.V. Berezhnaya, I.Ya. Mittova, N.S. Perov, O.V. Al’myasheva, A.T. Nguyen, V.O. Mittova, V.V. Bessalova, E.L. Viryutina, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 6, pp. 706–711.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezhnaya, M.V., Mittova, I.Y., Perov, N.S. et al. Production of Zinc-Doped Yttrium Ferrite Nanopowders by the Sol–Gel Method. Russ. J. Inorg. Chem. 63, 742–746 (2018). https://doi.org/10.1134/S0036023618060049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618060049

Navigation