Russian Journal of Inorganic Chemistry

, Volume 63, Issue 3, pp 400–405 | Cite as

Effect of Complex-Former Ion Concentration on the Selectivity of Metal Ion Sorption on Cross-Linked N-2-Sulfoethylchitosan

  • Yu. S. Petrova
  • L. K. Neudachina
  • M. Yu. Oseeva
  • A. V. Pestov
Physical Chemistry of Solutions
  • 2 Downloads

Abstract

Copper(II), silver(I), cobalt(II), nickel(II), zinc(II), manganese(II), and magnesium(II) sorption isotherms on cross-linked sulfoethylated chitosan with the degree of sulfoethylation DS = 0.7 (SEC 0.7) have been plotted for the individual or collective presence of these ions in solution have been constructed. The capacities of the studied sorbents for the studied metal ions have been calculated by processing the sorption isotherms. SEC 0.7 is found to have the greatest affinity to copper(II) and silver(I); their presence almost completely suppresses the sorption of associated metal ions. The Redlich–Peterson model gives the best fit to the sorption isotherms for collectively present metal ions, indicating the chemical inhomogeneity of the sorbent surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Pyatnitskii and V. V. Sukhan, The Analytical Chemistry of Silver (Nauka, Moscow, 1975) [in Russian].Google Scholar
  2. 2.
    V. G. Khukhryanskii, The Chemistry of Biogenic Elements (Vyshcha shkola, Kiev, 1990) [in Russian].Google Scholar
  3. 3.
    A. V. Skal’nyi, Chemical Elements in Human Physiology and Ecology (Oniks, Moscow) [in Russian].Google Scholar
  4. 4.
    A. V. Pestov, Yu. S. Petrova, A. V. Bukharova, et al., Russ. J. Appl. Chem. 86, 269 (2013). doi 10.1134/S1070427213020225CrossRefGoogle Scholar
  5. 5.
    Yu. S. Petrova, A. V. Bukharova, L. K. Neudachina, et al., Polymer Sci., Ser. B 56, 429 (2014). doi 10.1134/S1560090414040083Google Scholar
  6. 6.
    Yu. S. Petrova, L. K. Neudachina, A. V. Mekhaev, et al., Carbohydr. Res. 112, 462 (2014). doi 10.1016/j.carbpol.2014.06.028CrossRefGoogle Scholar
  7. 7.
    Yu. S. Petrova, A. V. Pestov, M. K. Usoltseva, and L. K. Neudachina, J. Hazard. Mater. 299, 696 (2015). doi 10.1016/j.jhazmat.2015.08.001CrossRefGoogle Scholar
  8. 8.
    K. Y. Foo and B. H. Hameed, Chem. Eng. J. 156, 2 (2010) http://dx.doi.org/doi 10.1016/j.cej.2009.09.013.CrossRefGoogle Scholar
  9. 9.
    G. Limousin, J.-P. Gaudet, L. Charlet, et al., Appl. Geochem. 22, 249 (2007). doi 10.1016/j.apgeochem. 2006.09.010CrossRefGoogle Scholar
  10. 10.
    O. Redlich and D. L. Peterson, J. Phys. Chem. 63, 1024 (1959). doi 10.1021/j150576a611CrossRefGoogle Scholar
  11. 11.
    H. Irving and R. J. P. Williams, J. Chem. Soc., 3192 (1953). doi 10.1039/JR9530003192Google Scholar
  12. 12.
    Yu. S. Petrova, A. V. Pestov, and L. K. Neudachina, Sep. Sci. Technol. 51, 1437 (2016). http://dx.doi.org/ doi 10.1080/01496395.2016.1157085.Google Scholar
  13. 13.
    Z. Modrzejewska, React. Funct. Polym. 73, 719 (2013). doi 10.1016/j.reactfunctpolym.2013.02.014CrossRefGoogle Scholar
  14. 14.
    W. S. Wan Ngah, C. S. Endud, and R. Mayanar, React. Funct. Polym. 50, 181 (2013). doi 10.1016/S1381-5148(01)00113-4CrossRefGoogle Scholar
  15. 15.
    A.-H. Chen, S.-C. Liu, C.-Y. Chen, et al., J. Hazard. Mater. 154, 184 (2008). doi 10.1016/j.jhazmat. 2007.10.009CrossRefGoogle Scholar
  16. 16.
    Z. Cao, H. Ge, and S. Lai, Eur. Polym. J. 37, 2141 (2001). doi 10.1016/S0014-3057(01)00070-2CrossRefGoogle Scholar
  17. 17.
    X. Wang, Y. Li, H. Li, et al., Carbohyd. Polym. 146, 274 (2016). doi 10.1016/j.carbpol.2016.03.055CrossRefGoogle Scholar
  18. 18.
    S. Yu. Bratskaya, Yu. A. Azarova, E. G. Matochkina, et al., Carbohyd. Polym. 87, 869 (2012). doi 10.1016/j.carbpol.2011.08.081CrossRefGoogle Scholar
  19. 19.
    X. Song, C. Li, R. Xu, and K. Wang, Ind. Eng. Chem. Res. 51, 11261 (2012). doi 10.1021/ie3010989CrossRefGoogle Scholar
  20. 20.
    M. Zhang, R. Helleur, and Y. Zhang, Carbohyd. Polym. 130, 206 (2015). doi 10.1016/j.carbpol.2015.05.038CrossRefGoogle Scholar
  21. 21.
    Yu. S. Petrova and L. K. Neudachina, Russ. J. Inorg. Chem. 59, 907 (2014). doi 10.1134/S0036023614080166CrossRefGoogle Scholar
  22. 22.
    N. Horzum, E. Boyaci, A. E. Eroglu, et al., Biomacromolecules 11, 3301 (2010). doi 10.1021/bm100755xCrossRefGoogle Scholar
  23. 23.
    Ch. Mao, S. A. Imtiaz, and Y. Zhang, J. Appl. Polym. Sci. 132, 1 (2015). doi 10.1002/app.42717Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. S. Petrova
    • 1
  • L. K. Neudachina
    • 1
  • M. Yu. Oseeva
    • 1
  • A. V. Pestov
    • 1
    • 2
  1. 1.Ural Federal University named after the first President of Russia B.N. YeltsinYekaterinburgRussia
  2. 2.Postovsky Institute of Organic SynthesisUral Branch of Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations