Russian Journal of Inorganic Chemistry

, Volume 63, Issue 3, pp 333–337 | Cite as

Cadmium Iodide Complex with 4-Aminomethylbenzoic Acid: Synthesis, Crystal Structure, and Luminescent Properties

  • Yu. V. Kokunov
  • V. V. Kovalev
  • Yu. E. Gorbunova
  • G. A. Razgonyaeva
  • S. A. Kozyukhin
Coordination Compounds
  • 4 Downloads

Abstract

[СdI2(4-АmbaH)2] · H2O has been synthesized by the reaction between CdI2 and 4-aminomethylbenzoic acid (4-AmbaH) in an aqueous solution. According to X-ray diffraction data, a 4-AmbaH aromatic molecule crystallizes in the form of a zwitterion with protonation of the NH 3 + amino group and deprotonation of the carboxylate group, which is chelately coordinated to the Cd2+ ion. In addition to two iodine atoms, the Cd2+ atom located on the double crystallographic axis is coordinated to the chelate carboxylate O(1) and O(2) atoms of two crystallographically equivalent ligands 4-AmbaH. The octahedral geometry of the Cd2+ ion is strongly distorted due to the chelate addition of 4-AmbaH. The chelate coordination of COO–groups is confirmed by IR spectroscopy data. The complex has luminescent properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Wang, M. Hong, J. Luo, et al., Eur. J. Inorg. Chem., 2904 (2002).Google Scholar
  2. 2.
    D. U. Miodragovic, D. M. Mitic, Z. M. Miodragovic, et al., Inorg. Chim. Acta 361, 861 (2008).CrossRefGoogle Scholar
  3. 3.
    N. Niklas, A. Zahl, and R. Alsfasser, Dalton Trans., 778 (2003).Google Scholar
  4. 4.
    T. Yajima, R. Takamido, Y. Shimazaki, et al., Dalton Trans., 299 (2007).Google Scholar
  5. 5.
    C. Zheng, R. Shi, X. Jin, et al., Inorg. Chem. Commun. 58, 74 (2015).CrossRefGoogle Scholar
  6. 6.
    J. Yu, Y. Cui, C. Wu, et al., J. Am. Chem. Soc. 137, 4026 (2015).CrossRefGoogle Scholar
  7. 7.
    F. Liu, R. Li, and W. Guo, Inorg. Chim. Acta 451, 116 (2016).CrossRefGoogle Scholar
  8. 8.
    X.-G. Meng, Y.-L. Song, and H.-W. Hou, Inorg. Chem. 43, 3528 (2004).CrossRefGoogle Scholar
  9. 9.
    P. Ilayabarathi and J. Chandrasekaran, Spectrochim. Acta, Pt. A 96, 684 (2012).CrossRefGoogle Scholar
  10. 10.
    B. R. Strinivasan, Spectrochim. Acta. Pt. A 116, 639 (2013).CrossRefGoogle Scholar
  11. 11.
    Y. Le Fur and R. Masse, Acta Crystallogr., Sect. C 52, 2183 (1996).CrossRefGoogle Scholar
  12. 12.
    H.-J. Chen and X.-M. Chen, Inorg. Chim. Acta 329, 13 (2002).CrossRefGoogle Scholar
  13. 13.
    K. I. Schaffers and D. A. Keszler, Acta Crystallogr., Sect. C 49, 1156 (1993).CrossRefGoogle Scholar
  14. 14.
    N. M. Subha and R. V. Krishnakumar, et al., Acta Crystallogr., Sect. E 58, m307 (2002).CrossRefGoogle Scholar
  15. 15.
    S. Kuriyama, Y. Inomata, Y. Arai, and F. S. Howell, J. Inorg. Biochem. 100, 1299 (2006).CrossRefGoogle Scholar
  16. 16.
    A. Wojciechjwska, A. Kochel, and M. Duczmal, Mat. Chem. Phys. 182, 472 (2016).CrossRefGoogle Scholar
  17. 17.
    G. M. Sheldrick, Acta Crystallogr., Sect. A 46, 467 (1990).CrossRefGoogle Scholar
  18. 18.
    G. M. Sheldrick, SHELXL-97: Program for the Refinement of Crystal Structures (Univ. of Göttingen, Göttingen, 1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Kokunov
    • 1
  • V. V. Kovalev
    • 1
  • Yu. E. Gorbunova
    • 1
  • G. A. Razgonyaeva
    • 1
  • S. A. Kozyukhin
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations