Advertisement

Russian Journal of Inorganic Chemistry

, Volume 62, Issue 6, pp 802–807 | Cite as

Boron, carbon, and aluminum supertetrahedral graphane analogues

  • D. V. Steglenko
  • S. A. Zaitsev
  • I. V. Getmanskii
  • V. V. Koval
  • R. M. Minyaev
  • V. I. Minkin
Theoretical Inorganic Chemistry

Abstract

The electronic and spatial structures of carbon, boron, and aluminum supertetrahedrane models of graphane have been studied by means of density functional theory methods in the supermolecular approximation (B3LYP/6-311G(df,2p)) and with imposing periodic boundary conditions (PBEPBE/6-311G (d,p), HSEH1PBE/6-311G (d,p)). Calculations predict that pure boron and aluminum structures are narrow-gap semiconductors. For supertetrahedral carbon graphane, calculations predict properties intermediate between the semiconductor and insulator properties. All bonds in the carbon system are two-center two-electron (2с–2е), while for the boron system, intratetrahedrane bonds are three-center two-electron (3с–2е), and intertetrahedrane bonds are common two-center two-electron bonds (2с–2е).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).CrossRefGoogle Scholar
  3. 3.
    J. Wu, W. Pisula, and K. Mullen, Chem. Rev. 107, 718 (2007).CrossRefGoogle Scholar
  4. 4.
    A. A. Balandin, S. Ghosh, W. Bao, et al., Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
  5. 5.
    I. Meric, M. Y. Han, A. F. Young, et al., Nat. Nanotech. 3, 654 (2008).CrossRefGoogle Scholar
  6. 6.
    C. Soldano, A. Mahmood, and E. Dujardin, CARBO 48 (2010), 2127.CrossRefGoogle Scholar
  7. 7.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  8. 8.
    J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. 75, 153401 (2013).CrossRefGoogle Scholar
  9. 9.
    D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Science 323, 610 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Savchenko, Science 323, 589 (2009).CrossRefGoogle Scholar
  11. 11.
    G. Savini, A. C. Ferrari, and F. Giustino, Phys. Rev. Lett. 105, 037002 (2010).CrossRefGoogle Scholar
  12. 12.
    A. Kara, C. Leandri, M. E. Davila, et al., J. Supercond. Nov. Magn. 22, 259 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Li, F. Li, Z. Zhou, and Z. Chen, J. Am. Chem. Soc. 133, 900 (2011).CrossRefGoogle Scholar
  14. 14.
    Z. A. Piazza, W.-L. Li, L.-S. Wang, et al., Nat. Commun. 5 (3113) (2014).Google Scholar
  15. 15.
    H. Tang and S. Ismail-Beigi, Phys. Rev. Lett. 99, 115501 (2007).CrossRefGoogle Scholar
  16. 16.
    X.-F. Zhou, X. Dong, A. R. Oganov, et al., Phys. Rev. Lett. 113, 176101 (2014).CrossRefGoogle Scholar
  17. 17.
    E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Nano Lett. 12, 2441 (2012).CrossRefGoogle Scholar
  18. 18.
    X. Wu, J. Dai, Y. Zhao, et al., ACS Nano 6, 7443 (2012).CrossRefGoogle Scholar
  19. 19.
    T. Ogitsu, E. Schwegler, and G. Galli, Chem. Rev. 113, 3425 (2013).CrossRefGoogle Scholar
  20. 20.
    X. Wu, J. Dai, Y. Zhao, et al., ACS Nano 7, 880 (2013).CrossRefGoogle Scholar
  21. 21.
    J. Dai, Y. Zhao, X. Wu, et al., J. Phys. Chem. Lett. 4, 561 (2013).CrossRefGoogle Scholar
  22. 22.
    X. Yu, L. Li, X.-W. Xu, et al., J. Phys. Chem. C 116, 20075 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Dun, Y. Zhao, X. J. Wu, et al., J. Phys. Chem. Lett. 4, 561 (2013).CrossRefGoogle Scholar
  24. 24.
    Y. Li, Y. Liao, and Z. Chen, Angew. Chem., Int. Ed. 53, 7248 (2014).CrossRefGoogle Scholar
  25. 25.
    E. S. Penev, A. Kutana, and B. I. Yakobson, Nano Lett. 16, 2522 (2016).CrossRefGoogle Scholar
  26. 26.
    R. M. Minyaev and V. E. Avakyan, Dokl. Chem. 434, 253 (2010).CrossRefGoogle Scholar
  27. 27.
    X.-L. Sheng, Q.-B. Yan, F. Ye, et al., Phys. Rev. Lett. 106, 155703 (2011).CrossRefGoogle Scholar
  28. 28.
    R. M. Minyaev, Izv. Akad. Nauk, Ser. Khim., No. 9, 1657 (2012).Google Scholar
  29. 29.
    J. B. Foresman and E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian, Inc., Pittsburgh, 1996).Google Scholar
  30. 30.
    M. J. Frisch, et al., Gaussian 09, Rev. D.01, Gaussian, Inc., Wallingford CT, 2013.Google Scholar
  31. 31.
    G. A. Zhurko and D. A. Zhurko, http://www.chemcraftprog. com (accessed January 23, 2011).Google Scholar
  32. 32.
    K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).CrossRefGoogle Scholar
  33. 33.
    H. T. Stokes and D. M. Hatch, J. Appl. Crystallogr. 38, 237 (2005).CrossRefGoogle Scholar
  34. 34.
    R. M. Minyaev, I. A. Popov, V. V. Koval, et al., Struct. Chem. 26, 223 (2015).CrossRefGoogle Scholar
  35. 35.
    E. D. Glendening, C. R. Landis, and F. Weinhold, WIREs Comp. Mol. Sci, 2, 1 (2012).CrossRefGoogle Scholar
  36. 36.
    A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. V. Steglenko
    • 1
  • S. A. Zaitsev
    • 1
  • I. V. Getmanskii
    • 1
  • V. V. Koval
    • 1
  • R. M. Minyaev
    • 1
  • V. I. Minkin
    • 1
  1. 1.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations