Skip to main content
Log in

Boron, carbon, and aluminum supertetrahedral graphane analogues

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The electronic and spatial structures of carbon, boron, and aluminum supertetrahedrane models of graphane have been studied by means of density functional theory methods in the supermolecular approximation (B3LYP/6-311G(df,2p)) and with imposing periodic boundary conditions (PBEPBE/6-311G (d,p), HSEH1PBE/6-311G (d,p)). Calculations predict that pure boron and aluminum structures are narrow-gap semiconductors. For supertetrahedral carbon graphane, calculations predict properties intermediate between the semiconductor and insulator properties. All bonds in the carbon system are two-center two-electron (2с–2е), while for the boron system, intratetrahedrane bonds are three-center two-electron (3с–2е), and intertetrahedrane bonds are common two-center two-electron bonds (2с–2е).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).

    Article  CAS  Google Scholar 

  3. J. Wu, W. Pisula, and K. Mullen, Chem. Rev. 107, 718 (2007).

    Article  CAS  Google Scholar 

  4. A. A. Balandin, S. Ghosh, W. Bao, et al., Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  5. I. Meric, M. Y. Han, A. F. Young, et al., Nat. Nanotech. 3, 654 (2008).

    Article  CAS  Google Scholar 

  6. C. Soldano, A. Mahmood, and E. Dujardin, CARBO 48 (2010), 2127.

    Article  CAS  Google Scholar 

  7. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  8. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. 75, 153401 (2013).

    Article  Google Scholar 

  9. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Science 323, 610 (2009).

    Article  CAS  Google Scholar 

  10. A. Savchenko, Science 323, 589 (2009).

    Article  CAS  Google Scholar 

  11. G. Savini, A. C. Ferrari, and F. Giustino, Phys. Rev. Lett. 105, 037002 (2010).

    Article  CAS  Google Scholar 

  12. A. Kara, C. Leandri, M. E. Davila, et al., J. Supercond. Nov. Magn. 22, 259 (2009).

    Article  CAS  Google Scholar 

  13. Y. Li, F. Li, Z. Zhou, and Z. Chen, J. Am. Chem. Soc. 133, 900 (2011).

    Article  CAS  Google Scholar 

  14. Z. A. Piazza, W.-L. Li, L.-S. Wang, et al., Nat. Commun. 5 (3113) (2014).

    Google Scholar 

  15. H. Tang and S. Ismail-Beigi, Phys. Rev. Lett. 99, 115501 (2007).

    Article  Google Scholar 

  16. X.-F. Zhou, X. Dong, A. R. Oganov, et al., Phys. Rev. Lett. 113, 176101 (2014).

    Article  Google Scholar 

  17. E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Nano Lett. 12, 2441 (2012).

    Article  CAS  Google Scholar 

  18. X. Wu, J. Dai, Y. Zhao, et al., ACS Nano 6, 7443 (2012).

    Article  CAS  Google Scholar 

  19. T. Ogitsu, E. Schwegler, and G. Galli, Chem. Rev. 113, 3425 (2013).

    Article  CAS  Google Scholar 

  20. X. Wu, J. Dai, Y. Zhao, et al., ACS Nano 7, 880 (2013).

    Article  CAS  Google Scholar 

  21. J. Dai, Y. Zhao, X. Wu, et al., J. Phys. Chem. Lett. 4, 561 (2013).

    Article  CAS  Google Scholar 

  22. X. Yu, L. Li, X.-W. Xu, et al., J. Phys. Chem. C 116, 20075 (2012).

    Article  CAS  Google Scholar 

  23. J. Dun, Y. Zhao, X. J. Wu, et al., J. Phys. Chem. Lett. 4, 561 (2013).

    Article  Google Scholar 

  24. Y. Li, Y. Liao, and Z. Chen, Angew. Chem., Int. Ed. 53, 7248 (2014).

    Article  CAS  Google Scholar 

  25. E. S. Penev, A. Kutana, and B. I. Yakobson, Nano Lett. 16, 2522 (2016).

    Article  CAS  Google Scholar 

  26. R. M. Minyaev and V. E. Avakyan, Dokl. Chem. 434, 253 (2010).

    Article  CAS  Google Scholar 

  27. X.-L. Sheng, Q.-B. Yan, F. Ye, et al., Phys. Rev. Lett. 106, 155703 (2011).

    Article  Google Scholar 

  28. R. M. Minyaev, Izv. Akad. Nauk, Ser. Khim., No. 9, 1657 (2012).

    Google Scholar 

  29. J. B. Foresman and E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian, Inc., Pittsburgh, 1996).

    Google Scholar 

  30. M. J. Frisch, et al., Gaussian 09, Rev. D.01, Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  31. G. A. Zhurko and D. A. Zhurko, http://www.chemcraftprog. com (accessed January 23, 2011).

  32. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  CAS  Google Scholar 

  33. H. T. Stokes and D. M. Hatch, J. Appl. Crystallogr. 38, 237 (2005).

    Article  CAS  Google Scholar 

  34. R. M. Minyaev, I. A. Popov, V. V. Koval, et al., Struct. Chem. 26, 223 (2015).

    Article  CAS  Google Scholar 

  35. E. D. Glendening, C. R. Landis, and F. Weinhold, WIREs Comp. Mol. Sci, 2, 1 (2012).

    Article  CAS  Google Scholar 

  36. A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Steglenko.

Additional information

Original Russian Text © D.V. Steglenko, S.A. Zaitsev, I.V. Getmanskii, V.V. Koval, R.M. Minyaev, V.I. Minkin, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 6, pp. 820–826.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steglenko, D.V., Zaitsev, S.A., Getmanskii, I.V. et al. Boron, carbon, and aluminum supertetrahedral graphane analogues. Russ. J. Inorg. Chem. 62, 802–807 (2017). https://doi.org/10.1134/S0036023617060237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617060237

Navigation