Skip to main content
Log in

Thin films of the composition 8% Y2O3–92% ZrO2 (8YSZ) as gas-sensing materials for oxygen detection

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of hydrolytically active heteroligand precursors of the composition [M(O2C5H7) x (iOC5H11) y ] (M = Zr4+ and Y3+) using zirconium and yttrium acetylacetonates was investigated. It was shown that the reactivity of the obtained precursors in hydrolysis and polycondensation depends on the composition of the coordination sphere. It was studied how thin films of their solutions are applied by dip coating to the surface of Al2O3 substrates with platinum interdigital electrodes and a microheater. A study was made of the effect of the crystallization conditions and thickness of the oxide coatings of the composition 8 mol % Y2O3–ZrO2 on their microstructure and sensor characteristics in oxygen detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Angelica and Y. Fong, NIH Public Access 141, 520 (2008).

    Google Scholar 

  2. A. Carreau, B. Hafny-Rahbi, A. Matejuk, et al., J. Cell. Mol. Med. 15, 1239 (2011).

    Article  CAS  Google Scholar 

  3. R. E. Clutton, G. Schoeffmann, M. Chesnil, et al., Vet. Rec. 169, 440 (2011).

    Article  CAS  Google Scholar 

  4. P. Odier, J. F. Baumard, D. Panis, et al., J. Solid State Chem. 12, 324 (1975).

    Article  CAS  Google Scholar 

  5. S. Ikeda, O. Sakurai, K. Uematsu, et al., J. Mater. Sci. 20, 4593 (1985).

    Article  CAS  Google Scholar 

  6. M. Ihara, T. Kusano, and C. Yokoyama, J. Electrochem. Soc. 148, A209 (2001).

    Article  CAS  Google Scholar 

  7. J. Schefold, A. Brisse, and M. Zahid, ECS Trans. 25, 1021 (2009).

    Article  CAS  Google Scholar 

  8. A. Kishimoto, H. Hasunuma, T. Teranishi, et al., J. Alloys Compd. 648, 740 (2015).

    Article  CAS  Google Scholar 

  9. S. Omar, W. B. Najib, W. Chen, et al., J. Am. Ceram. Soc. 95, 1965 (2012).

    Article  CAS  Google Scholar 

  10. P. K. Sekhar, E. L. Brosha, R. Mukundan, et al., Solid State Ionics 181, 947 (2010).

    Article  CAS  Google Scholar 

  11. R. Radhakrishnan, A. V. Virkar, S. C. Singhal, et al., Sens. Actuat. B Chem. 105, 312 (2005).

    Article  CAS  Google Scholar 

  12. A. Cirera, C. Lopez-Gándara, and F. M. Ramos, J. Sensor. ID 258489 (2009).

    Google Scholar 

  13. E. Caproni, D. Gouvea, and R. Muccillo, Ceram. Int. 37, 273 (2011).

    Article  CAS  Google Scholar 

  14. M. Schulz, H. Fritze, and C. Stenzel, Sens. Actuat. B Chem. 187, 503 (2011).

    Article  Google Scholar 

  15. S. Yu, Q. Wu, M. Tabib-Azar, et al., Sens. Actuat. B Chem. 85, 212 (2002).

    Article  CAS  Google Scholar 

  16. M. Schelter, J. Zosel, W. Oelßner, et al., Sens. Actuat. B Chem. 187, 209 (2013).

    Article  CAS  Google Scholar 

  17. A. Lari, A. Khodadadi, and Y. Mortazavi, Sens. Actuat. B Chem. 139, 361 (2009).

    Article  CAS  Google Scholar 

  18. C. C. Chao, J. S. Park, X. Tian, et al., ACS Nano. 7, 2186 (2013).

    Article  CAS  Google Scholar 

  19. C. Xia, X. Lu, Y. Yan, et al., Appl. Surf. Sci. 257, 7952 (2011).

    Article  CAS  Google Scholar 

  20. J. F. Fernández-Sánchez, R. Cannas, S. Spichiger, et al., Anal. Chim. Acta 566, 271 (2006).

    Article  Google Scholar 

  21. J. M. Rheaume and A. P. Pisano, Ionics (Kiel) 17, 99 (2011).

    Article  CAS  Google Scholar 

  22. J. H. Joo and G. M. Choi, Solid State Ionics 177, 1053 (2006).

    Article  CAS  Google Scholar 

  23. H. B. Wang, C. R. Xia, G. Y. Meng, et al., Mater. Lett. 44, 23 (2000).

    Article  CAS  Google Scholar 

  24. N. T. Kuznetsov, V. G. Sevast’yanov, E. P. Simonenko, et al., RF Patent No. 2, 407705 (2010).

    Google Scholar 

  25. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 60, 795 (2015). doi 10.1134/S0036023615070153

    Article  CAS  Google Scholar 

  26. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 667 (2016). doi 10.1134/S003602361606019X

    Article  CAS  Google Scholar 

  27. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 805 (2016). doi 10.1134/S0036023616070184

    Article  CAS  Google Scholar 

  28. T. L. Egorova, M. V. Kalinina, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1061 (2016). doi 10.1134/S0036023616090047

    Article  CAS  Google Scholar 

  29. N. P. Simonenko, V. A. Nikolaev, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1505 (2016). doi 10.1134/S0036023616120184

    Article  CAS  Google Scholar 

  30. V. G. Sevast’yanov, E. P. Simonenko, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 57, 307 (2012). doi 10.1134/S0036023612030278

    Article  Google Scholar 

  31. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 57, 1521 (2012). doi 10.1134/S0036023612120194

    Article  CAS  Google Scholar 

  32. N. P. Simonenko, V. A. Nikolaev, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 929 (2016). doi 10.1134/S0036023616080167

    Article  CAS  Google Scholar 

  33. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Yad. Fiz. Inzh. 5, 331 (2014).

    Google Scholar 

  34. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Kompoz. Nanostrukt., No. 4, 52 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Simonenko.

Additional information

Original Russian Text © N.P. Simonenko, E.P. Simonenko, A.S. Mokrushin, V.S. Popov, A.A. Vasiliev, V.G. Sevastyanov, N.T. Kuznetsov, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 6, pp. 707–714.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, N.P., Simonenko, E.P., Mokrushin, A.S. et al. Thin films of the composition 8% Y2O3–92% ZrO2 (8YSZ) as gas-sensing materials for oxygen detection. Russ. J. Inorg. Chem. 62, 695–701 (2017). https://doi.org/10.1134/S0036023617060213

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617060213

Navigation