Russian Journal of Inorganic Chemistry

, Volume 62, Issue 6, pp 695–701 | Cite as

Thin films of the composition 8% Y2O3–92% ZrO2 (8YSZ) as gas-sensing materials for oxygen detection

  • N. P. Simonenko
  • E. P. Simonenko
  • A. S. Mokrushin
  • V. S. Popov
  • A. A. Vasiliev
  • V. G. Sevastyanov
  • N. T. Kuznetsov
Synthesis and Properties of Inorganic Compounds

Abstract

The synthesis of hydrolytically active heteroligand precursors of the composition [M(O2C5H7) x ( i OC5H11) y ] (M = Zr4+ and Y3+) using zirconium and yttrium acetylacetonates was investigated. It was shown that the reactivity of the obtained precursors in hydrolysis and polycondensation depends on the composition of the coordination sphere. It was studied how thin films of their solutions are applied by dip coating to the surface of Al2O3 substrates with platinum interdigital electrodes and a microheater. A study was made of the effect of the crystallization conditions and thickness of the oxide coatings of the composition 8 mol % Y2O3–ZrO2 on their microstructure and sensor characteristics in oxygen detection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Angelica and Y. Fong, NIH Public Access 141, 520 (2008).Google Scholar
  2. 2.
    A. Carreau, B. Hafny-Rahbi, A. Matejuk, et al., J. Cell. Mol. Med. 15, 1239 (2011).CrossRefGoogle Scholar
  3. 3.
    R. E. Clutton, G. Schoeffmann, M. Chesnil, et al., Vet. Rec. 169, 440 (2011).CrossRefGoogle Scholar
  4. 4.
    P. Odier, J. F. Baumard, D. Panis, et al., J. Solid State Chem. 12, 324 (1975).CrossRefGoogle Scholar
  5. 5.
    S. Ikeda, O. Sakurai, K. Uematsu, et al., J. Mater. Sci. 20, 4593 (1985).CrossRefGoogle Scholar
  6. 6.
    M. Ihara, T. Kusano, and C. Yokoyama, J. Electrochem. Soc. 148, A209 (2001).CrossRefGoogle Scholar
  7. 7.
    J. Schefold, A. Brisse, and M. Zahid, ECS Trans. 25, 1021 (2009).CrossRefGoogle Scholar
  8. 8.
    A. Kishimoto, H. Hasunuma, T. Teranishi, et al., J. Alloys Compd. 648, 740 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Omar, W. B. Najib, W. Chen, et al., J. Am. Ceram. Soc. 95, 1965 (2012).CrossRefGoogle Scholar
  10. 10.
    P. K. Sekhar, E. L. Brosha, R. Mukundan, et al., Solid State Ionics 181, 947 (2010).CrossRefGoogle Scholar
  11. 11.
    R. Radhakrishnan, A. V. Virkar, S. C. Singhal, et al., Sens. Actuat. B Chem. 105, 312 (2005).CrossRefGoogle Scholar
  12. 12.
    A. Cirera, C. Lopez-Gándara, and F. M. Ramos, J. Sensor. ID 258489 (2009).Google Scholar
  13. 13.
    E. Caproni, D. Gouvea, and R. Muccillo, Ceram. Int. 37, 273 (2011).CrossRefGoogle Scholar
  14. 14.
    M. Schulz, H. Fritze, and C. Stenzel, Sens. Actuat. B Chem. 187, 503 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Yu, Q. Wu, M. Tabib-Azar, et al., Sens. Actuat. B Chem. 85, 212 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Schelter, J. Zosel, W. Oelßner, et al., Sens. Actuat. B Chem. 187, 209 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Lari, A. Khodadadi, and Y. Mortazavi, Sens. Actuat. B Chem. 139, 361 (2009).CrossRefGoogle Scholar
  18. 18.
    C. C. Chao, J. S. Park, X. Tian, et al., ACS Nano. 7, 2186 (2013).CrossRefGoogle Scholar
  19. 19.
    C. Xia, X. Lu, Y. Yan, et al., Appl. Surf. Sci. 257, 7952 (2011).CrossRefGoogle Scholar
  20. 20.
    J. F. Fernández-Sánchez, R. Cannas, S. Spichiger, et al., Anal. Chim. Acta 566, 271 (2006).CrossRefGoogle Scholar
  21. 21.
    J. M. Rheaume and A. P. Pisano, Ionics (Kiel) 17, 99 (2011).CrossRefGoogle Scholar
  22. 22.
    J. H. Joo and G. M. Choi, Solid State Ionics 177, 1053 (2006).CrossRefGoogle Scholar
  23. 23.
    H. B. Wang, C. R. Xia, G. Y. Meng, et al., Mater. Lett. 44, 23 (2000).CrossRefGoogle Scholar
  24. 24.
    N. T. Kuznetsov, V. G. Sevast’yanov, E. P. Simonenko, et al., RF Patent No. 2, 407705 (2010).Google Scholar
  25. 25.
    N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 60, 795 (2015). doi 10.1134/S0036023615070153CrossRefGoogle Scholar
  26. 26.
    N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 667 (2016). doi 10.1134/S003602361606019XCrossRefGoogle Scholar
  27. 27.
    N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 805 (2016). doi 10.1134/S0036023616070184CrossRefGoogle Scholar
  28. 28.
    T. L. Egorova, M. V. Kalinina, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1061 (2016). doi 10.1134/S0036023616090047CrossRefGoogle Scholar
  29. 29.
    N. P. Simonenko, V. A. Nikolaev, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1505 (2016). doi 10.1134/S0036023616120184CrossRefGoogle Scholar
  30. 30.
    V. G. Sevast’yanov, E. P. Simonenko, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 57, 307 (2012). doi 10.1134/S0036023612030278CrossRefGoogle Scholar
  31. 31.
    E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 57, 1521 (2012). doi 10.1134/S0036023612120194CrossRefGoogle Scholar
  32. 32.
    N. P. Simonenko, V. A. Nikolaev, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 929 (2016). doi 10.1134/S0036023616080167CrossRefGoogle Scholar
  33. 33.
    E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Yad. Fiz. Inzh. 5, 331 (2014).Google Scholar
  34. 34.
    E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Kompoz. Nanostrukt., No. 4, 52 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. P. Simonenko
    • 1
  • E. P. Simonenko
    • 1
    • 2
  • A. S. Mokrushin
    • 1
  • V. S. Popov
    • 1
  • A. A. Vasiliev
    • 3
  • V. G. Sevastyanov
    • 1
    • 2
  • N. T. Kuznetsov
    • 1
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Samara National Research UniversitySamaraRussia
  3. 3.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations