Russian Journal of Inorganic Chemistry

, Volume 62, Issue 6, pp 723–728 | Cite as

Ion transfer asymmetry in Nafion membranes with gradient distribution of acid salts of heteropoly acids

  • A. K. Osipov
  • A. O. Volkov
  • E. Yu. Safronova
  • A. B. Yaroslavtsev
Synthesis and Properties of Inorganic Compounds
  • 30 Downloads

Abstract

We describe the effect caused by the modification of Nafion membranes with nanoparticles of rubidium and cesium acid salts of phosphotungstic and silicotungstic heteropoly acids (HPAs) using layer-by-layer casting on the properties of the membranes depending on the dopant type and the percent modified layer thickness. The ionic conductivity and diffusion permeability of hybrid materials have been studied. The modification is shown to increase the ionic conductivity at low relative humidity. The highest conductivity is observed for the membranes where the modified layer amounts to 35–50% of the total membrane thickness. On the contrary, diffusion permeability is reduced upon modification. Asymmetric ion transfer is observed: the ion transfer rate from the modified layer is lower than from the unmodified layer. This asymmetry arises from the anion concentration gradient in the membrane, which is directed from the modified to unmodified side of the membrane. An asymmetric membrane oriented so that its modified side faces the anode can potentially increase the power of a fuel cell.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ion Exchange Technology I: Theory and Materials, Ed. by L. M. Inanuddin, M. L. Luqman, M. Inanuddin, and M. Luqman (Springer, London, 2012).Google Scholar
  2. 2.
    H. Strathmann, A. Grabowski, and G. Eigenberger, Ind. Eng. Chem. Res. 52, 10364 (2013).CrossRefGoogle Scholar
  3. 3.
    T. Sata, Ion Exchange Membranes, Preparation, Characterization, Modification and Application (Royal Soc. Chem., Cambridge, 2004).Google Scholar
  4. 4.
    B. J. Sanghavi, O. S. Wolfbeis, T. Hirsch, and N. S. Swami, Microkhim. Acta 182, 1 (2015).CrossRefGoogle Scholar
  5. 5.
    E. Yu. Safronova, A. V. Parshina, E. A. Ryzhkova, et al., Russ. J. Inorg. Chem. 61, 1512 (2016).CrossRefGoogle Scholar
  6. 6.
    J. G. Hong, B. Zhang, S. Glabman, et al., J. Membr. Sci. 486, 71 (2015).CrossRefGoogle Scholar
  7. 7.
    G. Pourcelly, Pet. Chem. 51, 480 (2011).CrossRefGoogle Scholar
  8. 8.
    A. B. Yaroslavtsev, Russ. Chem. Rev., 85, 1255 (2016).CrossRefGoogle Scholar
  9. 9.
    E. A. Malahova, M. A. Chernigovskaya, and T. V. Raskulova, Proc. Eng. 113, 441 (2015).CrossRefGoogle Scholar
  10. 10.
    D. Cozzi, C. Bonis, A. D`Epifanio, et al., J. Power Sources 248, 1127 (2014).CrossRefGoogle Scholar
  11. 11.
    D. J. Kim, M. J. Jo, and S. Y. Nam, J. Ind. Eng. Chem. 21, 36 (2015).CrossRefGoogle Scholar
  12. 12.
    E. V. Nazyrova, S. A. Shkirskaya, N. A. Kononenko, and O. A. Demina, Pet. Chem. 56, 931 (2016).CrossRefGoogle Scholar
  13. 13.
    A. K. Osipov, E. Yu. Safronova, and A. B. Yaroslavtsev, Pet. Chem. 56, 1014 (2016).CrossRefGoogle Scholar
  14. 14.
    E. Gerasimova, E. Safronova, A. Ukshe, et al., Chem. Eng. J. 305, 121 (2016).CrossRefGoogle Scholar
  15. 15.
    A. A. Lysova, I. A. Stenina, Yu. G. Gorbunova, and A. B. Yaroslavtsev, Polym. Sci., Ser. B 55, 35 (2011).CrossRefGoogle Scholar
  16. 16.
    A. N. Filippov, V. M. Starov, N. A. Kononenko, and N. P. Berezina, Adv. Colloid Interface Sci. 139, 29 (2008).CrossRefGoogle Scholar
  17. 17.
    V. I. Roldugin and V. M. Zhdanov, Adv. Colloid Interface Sci. 168, 223 (2011).CrossRefGoogle Scholar
  18. 18.
    E. Yu. Safronova, A. K. Osipov, A. E. Baranchikov, and A. B. Yaroslavtsev, Neorg. Mater. 51, 1157 (2015).CrossRefGoogle Scholar
  19. 19.
    A. B. Yaroslavtsev, Yu. A. Karavanova, and E. Yu. Safronova, Pet. Chem. 51, 473 (2011).CrossRefGoogle Scholar
  20. 20.
    A. B. Yaroslavtsev, Ross. Nanotekhnol. 7, 8 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. K. Osipov
    • 1
  • A. O. Volkov
    • 2
  • E. Yu. Safronova
    • 1
  • A. B. Yaroslavtsev
    • 1
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations