Russian Journal of Inorganic Chemistry

, Volume 62, Issue 6, pp 818–821 | Cite as

Volatility and thermal stability of vanadyl β-diketonate complexes

  • I. P. Malkerova
  • A. M. Makarevich
  • A. S. Alikhanyan
  • N. P. Kuz’mina
Physical Methods of Investigation


Thermal behavior and thermodynamic characteristics of vanadyl β-diketonates—acetylacetonate VO(acac)2, dipivaloylmethanate VO(thd)2, and tris-hexafluoroacetylacetonate VO(hfa)2 (Hacac, 2,4-pentanedione; Hthd, 2,2,6,6-tetramethyl-3,5-heptanedione; Hhfa, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione)—have been studied by thermal analysis and the Knudsen effusion mass spectrometry study of gas phase composition. The compounds have been shown to undergo congruent sublimation. Saturated vapor over the complexes has been shown to comprise monomeric VOL2 molecules. Absolute values of partial pressures and sublimation enthalpies of these compounds have been determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Ladd and W. Paul, Solid State Commun. 7, 425 (1969).CrossRefGoogle Scholar
  2. 2.
    B. G. Chae, H. T. Kim, D. H. Youn, and K. Y. Kang, Physica B 369, 76 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Lui, H. Y. Hwang, H. Tao, et al., Nature 487, 345 (2012).CrossRefGoogle Scholar
  4. 4.
    Z. Yang, S. Ko, and S. Ramanathan, Ann. Rev. Mater. Res. 41, 337 (2011).CrossRefGoogle Scholar
  5. 5.
    N. Nakano, K. Shibuya, N. Ogawa, et al., Appl. Phys. Lett. 103, 153503 (2013).CrossRefGoogle Scholar
  6. 6.
    M. J. Dicken, K. Audin, I. M. Pryce, et al., Opt. Express 17, 18330 (2009).CrossRefGoogle Scholar
  7. 7.
    M. A. Kats, R. Blandchard, S. Zhang, et al., Phys. Rev. X 3, 041004 (2013).Google Scholar
  8. 8.
    T. H. Yang, R. Aggarwal, A. Gupta, et al., Appl. Phys. 107, 053514 (2010).CrossRefGoogle Scholar
  9. 9.
    N. F. Quackenbush, J. W. Tashman, J. A. Mundy, et al., Nano Lett. 13, 4857 (2013).CrossRefGoogle Scholar
  10. 10.
    M. B. Sahana, G. N. Subbanna, and S. A. Shivashankar, J. Appl. Phys. 92, 6495 (2002).CrossRefGoogle Scholar
  11. 11.
    T. D. Manning, I. P. Parkin, M. E. Pemble, et al., Chem. Mater. 16, 744 (2004).CrossRefGoogle Scholar
  12. 12.
    D. Vernardou, M. E. Pemble, and D. W. Sheel, Surf. Coat. Tec. 188–189, 250 (2004).CrossRefGoogle Scholar
  13. 13.
    D. Barreca, L. E. Depero, E. Franzato, et al., J. Electrochem. Soc. 146, 551 (1999).CrossRefGoogle Scholar
  14. 14.
    M. B. Sahana, M. S. Dharmaprakash, and S. A. Shivashankar, J. Mater. Chem. 12, 333 (2002).CrossRefGoogle Scholar
  15. 15.
    S. F. Spano, R. G. Toro, G. G. Condorelli, et al., Chem. Vap. Dep. 21, 319 (2015).CrossRefGoogle Scholar
  16. 16.
    A. M. Makarevvch, I. I. Sadukov, D. I. Sharovarov, et al., J. Mater. Chem., No. 3, 9197.Google Scholar
  17. 17.
    M. Esaulkov, P. Solyankin, A. Sidorov, et al., Optica 2, 790 (2015).CrossRefGoogle Scholar
  18. 18.
    L. N. Sidorov, M. V. Korobov, and L. V. Zhuravleva, Mass Spectral Thermodynamic Studies (Moscow State University, Moscow, 1985) [in Russian].Google Scholar
  19. 19.
    I. K. Igumenov, Yu. V. Chumachenko, and S. V. Zemskov, Problems in the Chemistry and Application of Metal β-Diketonates (Nauka, Moscow, 1982) [in Russian].Google Scholar
  20. 20.
    E. I. Tsyganova and L. M. Dyagileva, Russ. Chem. Rev. 65, 315 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. P. Malkerova
    • 1
  • A. M. Makarevich
    • 2
  • A. S. Alikhanyan
    • 1
  • N. P. Kuz’mina
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations