Skip to main content
Log in

Atomic structure and bonding interaction in a layered molybdenum disulfide compound with trimethylphenylammonium cations

  • Coordination Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The atomic structure of the layered nanocrystalline molybdenum disulfide compound with trimethylphenylammonium cations has been determined for the first time using X-ray powder diffraction analysis adapted for turbostratically disordered systems and quantum chemical density functional theory calculations. It has been demonstrated that, in this compound, a conducting modification of MoS2 monolayers is stabilized, which is metastable under common conditions. Bonding interaction inside the molybdenum disulfide layers as well as between these layers and organic cations, revealed in the framework of Bader’s atoms in molecules theory, has been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. Tye and K. J. Smith, Top. Catal. 37, 129 (2006).

    Article  CAS  Google Scholar 

  2. J.-F. Yang, B. Parakash, J. Hardell, and Q.-F. Fang, Front. Mater. Sci. 6, 116 (2012).

    Article  Google Scholar 

  3. B. Radisavljevic, A. Radenovic, J. Brivio, et al., Nat. Nanotechnol. 6, 147 (2011).

    Article  CAS  Google Scholar 

  4. A. Nourbakhsh, A. Zubair, M. S. Dresselhaus, and T. Palacios, Nano Lett. 16, 1359 (2016).

    Article  CAS  Google Scholar 

  5. J. D. Benck, T. R. Hellstern, J. Kibsgaard, et al., ACS Catal. 4, 3957 (2014).

    Article  CAS  Google Scholar 

  6. X. Zong, G. Wu, H. Yan, et al., J. Phys. Chem. C 114, 1963 (2010).

    Article  CAS  Google Scholar 

  7. T. Jia, M. M. J. Li, L. Ye, et al., Chem. Commun. 51, 13496 (2015).

    Article  CAS  Google Scholar 

  8. M. Acerce, D. Voiry, and M. Chhowalla, Nat. Nanotechnol. 10, 313 (2015).

    Article  CAS  Google Scholar 

  9. M. A. Py and R. R. Haering, Can. J. Phys. 61, 76 (1983).

    Article  CAS  Google Scholar 

  10. A. N. Enyashin and G. Seifert, Comp. Theor. Chem. 999, 13 (2012).

    Article  CAS  Google Scholar 

  11. R. Lv, J. A. Robinson, R. E. Schaak, et al., Acc. Chem. Res. 48, 56 (2015).

    Article  CAS  Google Scholar 

  12. F. Wypych and R. Schollhorn, J. Chem. Soc., Chem. Commun., No. 19, 1386 (1992).

    Article  Google Scholar 

  13. A. S. Goloveshkin, I. S. Bushmarinov, N. D. Lenenko, et al., J. Phys. Chem. C 117, 8509 (2013).

    Article  CAS  Google Scholar 

  14. A. S. Golub, Y. V. Zubavichus, Y. L. Slovokhotov, et al., Solid State Ion. 128, 151 (2000).

    Article  CAS  Google Scholar 

  15. P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    Article  CAS  Google Scholar 

  16. A. S. Goloveshkin, N. D. Lenenko, V. I. Zaikovskii, et al., RSC Adv. 5, 19206 (2015).

    Article  CAS  Google Scholar 

  17. A. S. Goloveshkin, I. S. Bushmarinov, A. A. Korlyukov, et al., Langmuir 31, 8953 (2015).

    Article  CAS  Google Scholar 

  18. TOPAS 5.0 User Manual, Bruker AXS GmbH, Karlsruhe, Germany, 2014.

  19. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  20. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1994).

    Article  Google Scholar 

  21. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

  22. G. Kresse and D. Joubert, Phys. Rev. 59, 1758.

  23. X. Gonze, J.-M. Beuken, R. Caracas, et al., Comp. Mater. Sci. 25, 478 (2002).

    Article  Google Scholar 

  24. R. Bader, Atoms in Molecules: A Quantum Theory, (Clarendon, 1994).

    Google Scholar 

  25. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 84204 (2009).

    CAS  Google Scholar 

  26. K. Ufer, G. Roth, R. Kleeberg, et al., Z. Kristallogr. 219, 519 (2004).

    CAS  Google Scholar 

  27. R. A. Gordon, D. Yang, E. D. Crozier, et al., Phys. Rev. B 65, 125407 (2002).

    Article  Google Scholar 

  28. X. Wang, J. Li, R. D. Hart, et al., J. Appl. Crystallogr. 44, 902 (2011).

    Article  CAS  Google Scholar 

  29. A. V. Powell, L. Kosidowski, and A. McDowall, J. Mater. Chem. 11, 1086 (2001).

    Article  CAS  Google Scholar 

  30. F. Allen, Acta Crystallogr., Sect. B 58, 380 (2002).

    Article  Google Scholar 

  31. J. Van De Streek and M. A. Neumann, Acta Crystallogr., Sect. B 66, 544 (2010).

    Article  Google Scholar 

  32. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett. 285, 170 (1998).

    Article  CAS  Google Scholar 

  33. E. Espinosa, C. Lecomte, and E. Molins, Chem. Phys. Lett. 300, 745 (1999).

    Article  CAS  Google Scholar 

  34. N. G. Naumov, A. A. Korlyukov, D. A. Piryazev, et al., Izv. Akad. Nauk, Ser. Khim., No. 8, 1852 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Goloveshkin.

Additional information

Original Russian Text © A.S. Goloveshkin, I.S. Bushmarinov, A.A. Korlyukov, N.D. Lenenko, A.S. Golub’, I.L. Eremenko, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 6, pp. 743–750.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goloveshkin, A.S., Bushmarinov, I.S., Korlyukov, A.A. et al. Atomic structure and bonding interaction in a layered molybdenum disulfide compound with trimethylphenylammonium cations. Russ. J. Inorg. Chem. 62, 729–735 (2017). https://doi.org/10.1134/S0036023617060080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617060080

Navigation