Advertisement

Russian Journal of Inorganic Chemistry

, Volume 62, Issue 6, pp 729–735 | Cite as

Atomic structure and bonding interaction in a layered molybdenum disulfide compound with trimethylphenylammonium cations

  • A. S. Goloveshkin
  • I. S. Bushmarinov
  • A. A. Korlyukov
  • N. D. Lenenko
  • A. S. Golub’
  • I. L. Eremenko
Coordination Compounds
  • 57 Downloads

Abstract

The atomic structure of the layered nanocrystalline molybdenum disulfide compound with trimethylphenylammonium cations has been determined for the first time using X-ray powder diffraction analysis adapted for turbostratically disordered systems and quantum chemical density functional theory calculations. It has been demonstrated that, in this compound, a conducting modification of MoS2 monolayers is stabilized, which is metastable under common conditions. Bonding interaction inside the molybdenum disulfide layers as well as between these layers and organic cations, revealed in the framework of Bader’s atoms in molecules theory, has been considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. T. Tye and K. J. Smith, Top. Catal. 37, 129 (2006).CrossRefGoogle Scholar
  2. 2.
    J.-F. Yang, B. Parakash, J. Hardell, and Q.-F. Fang, Front. Mater. Sci. 6, 116 (2012).CrossRefGoogle Scholar
  3. 3.
    B. Radisavljevic, A. Radenovic, J. Brivio, et al., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Nourbakhsh, A. Zubair, M. S. Dresselhaus, and T. Palacios, Nano Lett. 16, 1359 (2016).CrossRefGoogle Scholar
  5. 5.
    J. D. Benck, T. R. Hellstern, J. Kibsgaard, et al., ACS Catal. 4, 3957 (2014).CrossRefGoogle Scholar
  6. 6.
    X. Zong, G. Wu, H. Yan, et al., J. Phys. Chem. C 114, 1963 (2010).CrossRefGoogle Scholar
  7. 7.
    T. Jia, M. M. J. Li, L. Ye, et al., Chem. Commun. 51, 13496 (2015).CrossRefGoogle Scholar
  8. 8.
    M. Acerce, D. Voiry, and M. Chhowalla, Nat. Nanotechnol. 10, 313 (2015).CrossRefGoogle Scholar
  9. 9.
    M. A. Py and R. R. Haering, Can. J. Phys. 61, 76 (1983).CrossRefGoogle Scholar
  10. 10.
    A. N. Enyashin and G. Seifert, Comp. Theor. Chem. 999, 13 (2012).CrossRefGoogle Scholar
  11. 11.
    R. Lv, J. A. Robinson, R. E. Schaak, et al., Acc. Chem. Res. 48, 56 (2015).CrossRefGoogle Scholar
  12. 12.
    F. Wypych and R. Schollhorn, J. Chem. Soc., Chem. Commun., No. 19, 1386 (1992).CrossRefGoogle Scholar
  13. 13.
    A. S. Goloveshkin, I. S. Bushmarinov, N. D. Lenenko, et al., J. Phys. Chem. C 117, 8509 (2013).CrossRefGoogle Scholar
  14. 14.
    A. S. Golub, Y. V. Zubavichus, Y. L. Slovokhotov, et al., Solid State Ion. 128, 151 (2000).CrossRefGoogle Scholar
  15. 15.
    P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).CrossRefGoogle Scholar
  16. 16.
    A. S. Goloveshkin, N. D. Lenenko, V. I. Zaikovskii, et al., RSC Adv. 5, 19206 (2015).CrossRefGoogle Scholar
  17. 17.
    A. S. Goloveshkin, I. S. Bushmarinov, A. A. Korlyukov, et al., Langmuir 31, 8953 (2015).CrossRefGoogle Scholar
  18. 18.
    TOPAS 5.0 User Manual, Bruker AXS GmbH, Karlsruhe, Germany, 2014.Google Scholar
  19. 19.
    G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  20. 20.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1994).CrossRefGoogle Scholar
  21. 21.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
  22. 22.
    G. Kresse and D. Joubert, Phys. Rev. 59, 1758.Google Scholar
  23. 23.
    X. Gonze, J.-M. Beuken, R. Caracas, et al., Comp. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
  24. 24.
    R. Bader, Atoms in Molecules: A Quantum Theory, (Clarendon, 1994).Google Scholar
  25. 25.
    W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 84204 (2009).Google Scholar
  26. 26.
    K. Ufer, G. Roth, R. Kleeberg, et al., Z. Kristallogr. 219, 519 (2004).Google Scholar
  27. 27.
    R. A. Gordon, D. Yang, E. D. Crozier, et al., Phys. Rev. B 65, 125407 (2002).CrossRefGoogle Scholar
  28. 28.
    X. Wang, J. Li, R. D. Hart, et al., J. Appl. Crystallogr. 44, 902 (2011).CrossRefGoogle Scholar
  29. 29.
    A. V. Powell, L. Kosidowski, and A. McDowall, J. Mater. Chem. 11, 1086 (2001).CrossRefGoogle Scholar
  30. 30.
    F. Allen, Acta Crystallogr., Sect. B 58, 380 (2002).CrossRefGoogle Scholar
  31. 31.
    J. Van De Streek and M. A. Neumann, Acta Crystallogr., Sect. B 66, 544 (2010).CrossRefGoogle Scholar
  32. 32.
    E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett. 285, 170 (1998).CrossRefGoogle Scholar
  33. 33.
    E. Espinosa, C. Lecomte, and E. Molins, Chem. Phys. Lett. 300, 745 (1999).CrossRefGoogle Scholar
  34. 34.
    N. G. Naumov, A. A. Korlyukov, D. A. Piryazev, et al., Izv. Akad. Nauk, Ser. Khim., No. 8, 1852 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Goloveshkin
    • 1
  • I. S. Bushmarinov
    • 1
  • A. A. Korlyukov
    • 1
  • N. D. Lenenko
    • 1
  • A. S. Golub’
    • 1
  • I. L. Eremenko
    • 1
    • 2
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations