Russian Journal of Inorganic Chemistry

, Volume 62, Issue 6, pp 827–835 | Cite as

Thermal stability of potassium fluorooxalatozirconates

  • M. M. Godneva
  • N. M. Mikhailova
  • V. Ya. Kuznetsov
  • O. A. Zalkind
Physical Methods of Investigation


Thermal decomposition of fluorooxalatozirconates (FOxZs) K3ZrF5C2O4, K2ZrF4C2O4 ⋅ 2H2O, KZrF3C2O4 ⋅ 3H2O, and Zr4O3F2(C2O4)4 ⋅ 2H2O in air flow is studied. Crystalline K2ZrF4C2O4 and KZrF3C2O4 are detected. The decomposition onset temperature of anhydrous products goes down as the K/Zr molar ratio decreases. Disproportionation of potassium FOxZs both at the oxalate group yielding K2ZrF4C2O4 and ZrO2–x/2F x , K2C2O4 and K3ZrF7 and at fluorine yielding K3ZrF7 and ZrO2 takes place. FOxZs can be used as precursors to produce fine-grained ZrO2 (baddeleyite).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Shkarin, G. M. Zhabrova, N. D. Topor, and M. Ya. Kushnarev, Izv. Tomsk. Politekh. Univ. 199, 105 (1969).Google Scholar
  2. 2.
    V. A. Matyukha, Oxalates of Rare-Earth Elements and Actinides (Izd-vo SO RAN, Novosibirsk, 1998) [in Russian].Google Scholar
  3. 3.
    V. A. Matyukha and A. N. Zhiganov, Oxalates of Transition Elements (IzdAT, Moscow, 2012) [in Russian].Google Scholar
  4. 4.
    The Chemist’s Handbook. 21th Century. Chemistry and Chemical Technology. [Elektronnyi resurs]. Chem 21 info.Google Scholar
  5. 5.
    M. M. Godneva, M. P. Rys’kina, V. Ya. Kuznetsov, and O. A. Zalkind, Russ. J. Inorg. Chem. 60, 397 (2015).CrossRefGoogle Scholar
  6. 6.
    M. M. Godneva and D. L. Motov, Chemistry of the Titanium Family: Sulfates, Fluorides, and Fluorosilicates from Aqueous Media (Nauka, Moscow, 2006) [in Russian].Google Scholar
  7. 7.
    The Powder Diffraction File (ICDD).Google Scholar
  8. 8.
    K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds (Interscience, New York, 1986).Google Scholar
  9. 9.
    J. Fujita, A. E. Martell, and K. Nakamoto, J. Chem. Phys. 36, 324 (1962).CrossRefGoogle Scholar
  10. 10.
    J. Fujita, A. E. Martell, and K. Nakamoto, J. Chem. Phys. 36, 339 (1962).CrossRefGoogle Scholar
  11. 11.
    M. M. Godneva, S. D. Nikitina, D. L. Motov, et al., Russ. J. Inorg. Chem. 46, 705 (2001).Google Scholar
  12. 12.
    N. V. Chukanov, Infrared Spectra of Mineral Species. Extended Library (Springer, London/Dordrecht/Heidelberg/New York, 2014), Vol. 1, p. 1124.CrossRefGoogle Scholar
  13. 13.
    S. V. Gabelkov, R. V. Tarasov, N. S. Poltavtsev, et al., Vopr. At. Nauki Tekh., Ser. Fiz. Rad. Povrezhd. Rad. Materialoved. 85, 116 (2004).Google Scholar
  14. 14.
    F. G. R. Gimblett, A. Hussain, and K. S. W. Sing, J. Therm. Anal. 34, 1001 (1988).CrossRefGoogle Scholar
  15. 15.
    The Chemist’s Handbook, 3rd Ed., Ed. by B. P. Nikol’skii (Khimiya, 1971, Leningrad, 1168) [in Russian].Google Scholar
  16. 16.
    I. V. Arkhangel’skii, M. R. Kizhlo, L. N. Komissarova, et al., Zh. Neorg. Khim. 30, 2538 (1985).Google Scholar
  17. 17.
    I. N. Sheiko, R. V. Chernov, and V. S. Kikhno, Ukr. Khim. Zh. 27, 469 (1961).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. M. Godneva
    • 1
  • N. M. Mikhailova
    • 1
  • V. Ya. Kuznetsov
    • 1
  • O. A. Zalkind
    • 1
  1. 1.Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science CenterRussian Academy of SciencesApatity, Murmansk regionRussia

Personalised recommendations